Timezone: »
Author Information
Max Shen (Genentech)
Emmanuel Bengio (McGill University)
Ehsan Hajiramezanali (Genentech)
Andreas Loukas (EPFL)
Kyunghyun Cho (New York University, Genentech)

Kyunghyun Cho is an associate professor of computer science and data science at New York University and CIFAR Fellow of Learning in Machines & Brains. He is also a senior director of frontier research at the Prescient Design team within Genentech Research & Early Development (gRED). He was a research scientist at Facebook AI Research from June 2017 to May 2020 and a postdoctoral fellow at University of Montreal until Summer 2015 under the supervision of Prof. Yoshua Bengio, after receiving MSc and PhD degrees from Aalto University April 2011 and April 2014, respectively, under the supervision of Prof. Juha Karhunen, Dr. Tapani Raiko and Dr. Alexander Ilin. He received the Samsung Ho-Am Prize in Engineering in 2021. He tries his best to find a balance among machine learning, natural language processing, and life, but almost always fails to do so.
Tommaso Biancalani (Genentech)

I run the department of Machine Learning for Biology in Genentech
More from the Same Authors
-
2021 : True Few-Shot Learning with Language Models »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2022 : Linear Connectivity Reveals Generalization Strategies »
Jeevesh Juneja · Rachit Bansal · Kyunghyun Cho · João Sedoc · Naomi Saphra -
2023 : Latent State Transitions in Training Dynamics »
Michael Hu · Angelica Chen · Naomi Saphra · Kyunghyun Cho -
2023 : Separating multimodal modeling from multidimensional modeling for multimodal learning »
Divyam Madaan · Taro Makino · Sumit Chopra · Kyunghyun Cho -
2023 : Antibody DomainBed: Towards robust predictions using invariant representations of biological sequences carrying complex distribution shifts »
Natasa Tagasovska · Ji Won Park · Stephen Ra · Kyunghyun Cho -
2023 : Concept Bottleneck Generative Models »
Aya Ismail · Julius Adebayo · Hector Corrada Bravo · Stephen Ra · Kyunghyun Cho -
2023 : Goal-conditioned GFlowNets for Controllable Multi-Objective Molecular Design »
Julien Roy · Pierre-Luc Bacon · Christopher Pal · Emmanuel Bengio -
2023 : Protein Design with Guided Discrete Diffusion »
Nate Gruver · Samuel Stanton · Nathan Frey · Tim G. J. Rudner · Isidro Hotzel · Julien Lafrance-Vanasse · Arvind Rajpal · Kyunghyun Cho · Andrew Wilson -
2023 : Complex Preferences for Different Convergent Priors in Discrete Graph Diffusion »
Alex Tseng · Nathaniel Diamant · Tommaso Biancalani · Gabriele Scalia -
2023 : Learning to Explain Hypergraph Neural Networks »
Sepideh Maleki · Ehsan Hajiramezanali · Gabriele Scalia · Tommaso Biancalani · Kangway Chuang -
2023 Poster: Improving Graph Generation by Restricting Graph Bandwidth »
Nathaniel Diamant · Alex Tseng · Kangway Chuang · Tommaso Biancalani · Gabriele Scalia -
2023 Poster: Learning GFlowNets From Partial Episodes For Improved Convergence And Stability »
Kanika Madan · Jarrid Rector-Brooks · Maksym Korablyov · Emmanuel Bengio · Moksh Jain · Andrei-Cristian Nica · Tom Bosc · Yoshua Bengio · Nikolay Malkin -
2023 Oral: Learning GFlowNets From Partial Episodes For Improved Convergence And Stability »
Kanika Madan · Jarrid Rector-Brooks · Maksym Korablyov · Emmanuel Bengio · Moksh Jain · Andrei-Cristian Nica · Tom Bosc · Yoshua Bengio · Nikolay Malkin -
2023 Poster: Multi-Objective GFlowNets »
Moksh Jain · Sharath Chandra Raparthy · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Yoshua Bengio · Santiago Miret · Emmanuel Bengio -
2023 Poster: Infusing Lattice Symmetry Priors in Attention Mechanisms for Sample-Efficient Abstract Geometric Reasoning »
Mattia Atzeni · Mrinmaya Sachan · Andreas Loukas -
2023 Panel: ICML Education Outreach Panel »
Andreas Krause · Barbara Engelhardt · Emma Brunskill · Kyunghyun Cho -
2022 Poster: Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks »
Nan Wu · Stanislaw Jastrzebski · Kyunghyun Cho · Krzysztof J Geras -
2022 Poster: Biological Sequence Design with GFlowNets »
Moksh Jain · Emmanuel Bengio · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Bonaventure Dossou · Chanakya Ekbote · Jie Fu · Tianyu Zhang · Michael Kilgour · Dinghuai Zhang · Lena Simine · Payel Das · Yoshua Bengio -
2022 Poster: SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators »
Karolis Martinkus · Andreas Loukas · Nathanaël Perraudin · Roger Wattenhofer -
2022 Spotlight: SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators »
Karolis Martinkus · Andreas Loukas · Nathanaël Perraudin · Roger Wattenhofer -
2022 Spotlight: Biological Sequence Design with GFlowNets »
Moksh Jain · Emmanuel Bengio · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Bonaventure Dossou · Chanakya Ekbote · Jie Fu · Tianyu Zhang · Michael Kilgour · Dinghuai Zhang · Lena Simine · Payel Das · Yoshua Bengio -
2022 Spotlight: Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks »
Nan Wu · Stanislaw Jastrzebski · Kyunghyun Cho · Krzysztof J Geras -
2021 Poster: Rissanen Data Analysis: Examining Dataset Characteristics via Description Length »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 Spotlight: Rissanen Data Analysis: Examining Dataset Characteristics via Description Length »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 Poster: Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization »
Stanislaw Jastrzebski · Devansh Arpit · Oliver Astrand · Giancarlo Kerg · Huan Wang · Caiming Xiong · Richard Socher · Kyunghyun Cho · Krzysztof J Geras -
2021 Spotlight: Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization »
Stanislaw Jastrzebski · Devansh Arpit · Oliver Astrand · Giancarlo Kerg · Huan Wang · Caiming Xiong · Richard Socher · Kyunghyun Cho · Krzysztof J Geras -
2020 Poster: Interference and Generalization in Temporal Difference Learning »
Emmanuel Bengio · Joelle Pineau · Doina Precup -
2019 Workshop: Workshop on Multi-Task and Lifelong Reinforcement Learning »
Sarath Chandar · Shagun Sodhani · Khimya Khetarpal · Tom Zahavy · Daniel J. Mankowitz · Shie Mannor · Balaraman Ravindran · Doina Precup · Chelsea Finn · Abhishek Gupta · Amy Zhang · Kyunghyun Cho · Andrei A Rusu · Facebook Rob Fergus -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 Poster: Non-Monotonic Sequential Text Generation »
Sean Welleck · Kiante Brantley · Hal Daumé III · Kyunghyun Cho -
2019 Oral: Non-Monotonic Sequential Text Generation »
Sean Welleck · Kiante Brantley · Hal Daumé III · Kyunghyun Cho -
2018 Poster: Spectrally Approximating Large Graphs with Smaller Graphs »
Andreas Loukas · Pierre Vandergheynst -
2018 Oral: Spectrally Approximating Large Graphs with Smaller Graphs »
Andreas Loukas · Pierre Vandergheynst -
2018 Poster: Fast Approximate Spectral Clustering for Dynamic Networks »
Lionel Martin · Andreas Loukas · Pierre Vandergheynst -
2018 Oral: Fast Approximate Spectral Clustering for Dynamic Networks »
Lionel Martin · Andreas Loukas · Pierre Vandergheynst -
2017 Poster: How Close Are the Eigenvectors of the Sample and Actual Covariance Matrices? »
Andreas Loukas -
2017 Talk: How Close Are the Eigenvectors of the Sample and Actual Covariance Matrices? »
Andreas Loukas