Timezone: »
Estimating heterogeneous treatment effects from observational data is a crucial task across many fields, helping policy and decision-makers take better actions. There has been recent progress on robust and efficient methods for estimating the conditional average treatment effect (CATE) function, but these methods often do not take into account the risk of hidden confounding, which could arbitrarily and unknowingly bias any causal estimate based on observational data. We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on the level of hidden confounding. We derive the B-Learner by adapting recent results for sharp and valid bounds of the average treatment effect (Dorn et al., 2021) into the framework given by Kallus & Oprescu (2023) for robust and model-agnostic learning of conditional distributional treatment effects. The B-Learner can use any function estimator such as random forests and deep neural networks, and we prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods. Semi-synthetic experimental comparisons validate the theoretical findings, and we use real-world data demonstrate how the method might be used in practice.
Author Information
Miruna Oprescu (Cornell University)
Jacob Dorn (Princeton University)
Marah Ghoummaid (Technion - Israel Institute of Technology, Technion)
Andrew Jesson (University of Oxford)
Nathan Kallus (Cornell University)
Uri Shalit (Technion)
More from the Same Authors
-
2021 : Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data »
Andrew Jesson · Panagiotis Tigas · Joost van Amersfoort · Andreas Kirsch · Uri Shalit · Yarin Gal -
2023 : BatchGFN: Generative Flow Networks for Batch Active Learning »
Shreshth Malik · Salem Lahlou · Andrew Jesson · Moksh Jain · Nikolay Malkin · Tristan Deleu · Yoshua Bengio · Yarin Gal -
2023 : Adaptive Bias Correction for Improved Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2023 : Provable Offline Reinforcement Learning with Human Feedback »
Wenhao Zhan · Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 : Provable Offline Reinforcement Learning with Human Feedback »
Wenhao Zhan · Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 Workshop: The Second Workshop on Spurious Correlations, Invariance and Stability »
Yoav Wald · Claudia Shi · Aahlad Puli · Amir Feder · Limor Gultchin · Mark Goldstein · Maggie Makar · Victor Veitch · Uri Shalit -
2023 Poster: DiscoBAX - Discovery of optimal intervention sets in genomic experiment design »
Clare Lyle · Arash Mehrjou · Pascal Notin · Andrew Jesson · Stefan Bauer · Yarin Gal · Patrick Schwab -
2023 Poster: Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR »
Kaiwen Wang · Nathan Kallus · Wen Sun -
2023 Poster: Smooth Non-stationary Bandits »
Su Jia · Qian Xie · Nathan Kallus · Peter Frazier -
2023 Poster: Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings »
Masatoshi Uehara · Ayush Sekhari · Jason Lee · Nathan Kallus · Wen Sun -
2023 Poster: Differentiable Multi-Target Causal Bayesian Experimental Design »
Panagiotis Tigas · Yashas Annadani · Desi Ivanova · Andrew Jesson · Yarin Gal · Adam Foster · Stefan Bauer -
2022 Workshop: Spurious correlations, Invariance, and Stability (SCIS) »
Aahlad Puli · Maggie Makar · Victor Veitch · Yoav Wald · Mark Goldstein · Limor Gultchin · Angela Zhou · Uri Shalit · Suchi Saria -
2022 Poster: Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning »
Nathan Kallus · Xiaojie Mao · Kaiwen Wang · Zhengyuan Zhou -
2022 Poster: Learning Bellman Complete Representations for Offline Policy Evaluation »
Jonathan Chang · Kaiwen Wang · Nathan Kallus · Wen Sun -
2022 Spotlight: Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning »
Nathan Kallus · Xiaojie Mao · Kaiwen Wang · Zhengyuan Zhou -
2022 Oral: Learning Bellman Complete Representations for Offline Policy Evaluation »
Jonathan Chang · Kaiwen Wang · Nathan Kallus · Wen Sun -
2021 : Live Panel Discussion »
Thomas Dietterich · Chelsea Finn · Kamalika Chaudhuri · Yarin Gal · Uri Shalit -
2021 Workshop: The Neglected Assumptions In Causal Inference »
Niki Kilbertus · Lily Hu · Laura Balzer · Uri Shalit · Alexander D'Amour · Razieh Nabi -
2021 Poster: Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding »
Andrew Jesson · Sören Mindermann · Yarin Gal · Uri Shalit -
2021 Poster: Optimal Off-Policy Evaluation from Multiple Logging Policies »
Nathan Kallus · Yuta Saito · Masatoshi Uehara -
2021 Spotlight: Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding »
Andrew Jesson · Sören Mindermann · Yarin Gal · Uri Shalit -
2021 Spotlight: Optimal Off-Policy Evaluation from Multiple Logging Policies »
Nathan Kallus · Yuta Saito · Masatoshi Uehara -
2021 Poster: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2021 Spotlight: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2020 Poster: Robust Learning with the Hilbert-Schmidt Independence Criterion »
Daniel Greenfeld · Uri Shalit -
2020 Poster: Statistically Efficient Off-Policy Policy Gradients »
Nathan Kallus · Masatoshi Uehara -
2020 Poster: DeepMatch: Balancing Deep Covariate Representations for Causal Inference Using Adversarial Training »
Nathan Kallus -
2020 Poster: Efficient Policy Learning from Surrogate-Loss Classification Reductions »
Andrew Bennett · Nathan Kallus -
2020 Poster: Double Reinforcement Learning for Efficient and Robust Off-Policy Evaluation »
Nathan Kallus · Masatoshi Uehara -
2019 Poster: Classifying Treatment Responders Under Causal Effect Monotonicity »
Nathan Kallus -
2019 Oral: Classifying Treatment Responders Under Causal Effect Monotonicity »
Nathan Kallus -
2018 Poster: Residual Unfairness in Fair Machine Learning from Prejudiced Data »
Nathan Kallus · Angela Zhou -
2018 Oral: Residual Unfairness in Fair Machine Learning from Prejudiced Data »
Nathan Kallus · Angela Zhou -
2017 Poster: Recursive Partitioning for Personalization using Observational Data »
Nathan Kallus -
2017 Talk: Recursive Partitioning for Personalization using Observational Data »
Nathan Kallus