Timezone: »
Recent work has highlighted the complex influence training hyperparameters, e.g., the number of training epochs, can have on the prunability of machine learning models. Perhaps surprisingly, a systematic approach to predict precisely how adjusting a specific hyperparameter will affect prunability remains elusive. To address this gap, we introduce a phenomenological model grounded in the statistical mechanics of learning. Our approach uses temperature-like and load-like parameters to model the impact of neural network (NN) training hyperparameters on pruning performance. A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance. Based on this transition, we build a three-regime model by taxonomizing the global structure of the pruned NN loss landscape. Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model. Based on our results, we present three case-studies: 1) determining whether to increase or decrease a hyperparameter for improved pruning; 2) selecting the best model to prune from a family of models; and 3) tuning the hyperparameter of the Sharpness Aware Minimization method for better pruning performance.
Author Information
Yefan Zhou (UC Berkeley & International Computer Science Institute)

Hi, I'm Yefan. I am an ML researcher working with the Big Data Group at International Computer Science Institute (ICSI). I earned my Master's degree in EECS at UC Berkeley where I had the pleasure of being advised by Prof. Michael Mahoney. I will join Dartmouth College as a CS Ph.D. student in Fall 2023.
Yaoqing Yang (Dartmouth College)
Arin Chang (University of California, Berkeley)
Michael Mahoney (UC Berkeley)
More from the Same Authors
-
2023 : Hyperparameter Tuning using Loss Landscape »
Jianlong Chen · Qinxue Cao · Yefan Zhou · Konstantin Schürholt · Yaoqing Yang -
2023 : Teach GPT To Phish »
Ashwinee Panda · Zhengming Zhang · Yaoqing Yang · Prateek Mittal -
2023 : Fast Feature Selection with Fairness Constraints »
Francesco Quinzan · Rajiv Khanna · Moshik Hershcovitch · Sarel Cohen · Daniel Waddington · Tobias Friedrich · Michael Mahoney -
2023 Poster: Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes »
Liam Hodgkinson · Chris van der Heide · Fred Roosta · Michael Mahoney -
2023 Poster: Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching »
Ilgee Hong · Sen Na · Michael Mahoney · Mladen Kolar -
2023 Poster: Learning Physical Models that Can Respect Conservation Laws »
Derek Hansen · Danielle Robinson · Shima Alizadeh · Gaurav Gupta · Michael Mahoney -
2022 Poster: AutoIP: A United Framework to Integrate Physics into Gaussian Processes »
Da Long · Zheng Wang · Aditi Krishnapriyan · Robert Kirby · Shandian Zhe · Michael Mahoney -
2022 Poster: GACT: Activation Compressed Training for Generic Network Architectures »
Xiaoxuan Liu · Lianmin Zheng · Dequan Wang · Yukuo Cen · Weize Chen · Xu Han · Jianfei Chen · Zhiyuan Liu · Jie Tang · Joseph Gonzalez · Michael Mahoney · Alvin Cheung -
2022 Spotlight: AutoIP: A United Framework to Integrate Physics into Gaussian Processes »
Da Long · Zheng Wang · Aditi Krishnapriyan · Robert Kirby · Shandian Zhe · Michael Mahoney -
2022 Spotlight: GACT: Activation Compressed Training for Generic Network Architectures »
Xiaoxuan Liu · Lianmin Zheng · Dequan Wang · Yukuo Cen · Weize Chen · Xu Han · Jianfei Chen · Zhiyuan Liu · Jie Tang · Joseph Gonzalez · Michael Mahoney · Alvin Cheung -
2022 Poster: Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers »
Liam Hodgkinson · Umut Simsekli · Rajiv Khanna · Michael Mahoney -
2022 Poster: Fat–Tailed Variational Inference with Anisotropic Tail Adaptive Flows »
Feynman Liang · Michael Mahoney · Liam Hodgkinson -
2022 Poster: Neurotoxin: Durable Backdoors in Federated Learning »
Zhengming Zhang · Ashwinee Panda · Linyue Song · Yaoqing Yang · Michael Mahoney · Prateek Mittal · Kannan Ramchandran · Joseph E Gonzalez -
2022 Spotlight: Neurotoxin: Durable Backdoors in Federated Learning »
Zhengming Zhang · Ashwinee Panda · Linyue Song · Yaoqing Yang · Michael Mahoney · Prateek Mittal · Kannan Ramchandran · Joseph E Gonzalez -
2022 Spotlight: Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers »
Liam Hodgkinson · Umut Simsekli · Rajiv Khanna · Michael Mahoney -
2022 Spotlight: Fat–Tailed Variational Inference with Anisotropic Tail Adaptive Flows »
Feynman Liang · Michael Mahoney · Liam Hodgkinson -
2021 Workshop: Beyond first-order methods in machine learning systems »
Albert S Berahas · Anastasios Kyrillidis · Fred Roosta · Amir Gholaminejad · Michael Mahoney · Rachael Tappenden · Raghu Bollapragada · Rixon Crane · J. Lyle Kim -
2021 Poster: HAWQ-V3: Dyadic Neural Network Quantization »
Zhewei Yao · Zhen Dong · Zhangcheng Zheng · Amir Gholaminejad · Jiali Yu · Eric Tan · Leyuan Wang · Qijing Huang · Yida Wang · Michael Mahoney · EECS Kurt Keutzer -
2021 Spotlight: HAWQ-V3: Dyadic Neural Network Quantization »
Zhewei Yao · Zhen Dong · Zhangcheng Zheng · Amir Gholaminejad · Jiali Yu · Eric Tan · Leyuan Wang · Qijing Huang · Yida Wang · Michael Mahoney · EECS Kurt Keutzer -
2021 Poster: ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training »
Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez -
2021 Oral: ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training »
Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez -
2021 Poster: Multiplicative Noise and Heavy Tails in Stochastic Optimization »
Liam Hodgkinson · Michael Mahoney -
2021 Spotlight: Multiplicative Noise and Heavy Tails in Stochastic Optimization »
Liam Hodgkinson · Michael Mahoney -
2020 : Determinantal Point Processes in Randomized Numerical Linear Algebra »
Michael Mahoney -
2020 Workshop: Beyond first order methods in machine learning systems »
Albert S Berahas · Amir Gholaminejad · Anastasios Kyrillidis · Michael Mahoney · Fred Roosta -
2020 Poster: Forecasting Sequential Data Using Consistent Koopman Autoencoders »
Omri Azencot · N. Benjamin Erichson · Vanessa Lin · Michael Mahoney -
2020 Poster: PowerNorm: Rethinking Batch Normalization in Transformers »
Sheng Shen · Zhewei Yao · Amir Gholaminejad · Michael Mahoney · Kurt Keutzer -
2020 Poster: Error Estimation for Sketched SVD via the Bootstrap »
Miles Lopes · N. Benjamin Erichson · Michael Mahoney -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Why Deep Learning Works: Traditional and Heavy-Tailed Implicit Self-Regularization in Deep Neural Networks »
Michael Mahoney -
2019 Poster: Traditional and Heavy Tailed Self Regularization in Neural Network Models »
Michael Mahoney · Charles H Martin -
2019 Oral: Traditional and Heavy Tailed Self Regularization in Neural Network Models »
Michael Mahoney · Charles H Martin -
2018 Poster: Out-of-sample extension of graph adjacency spectral embedding »
Keith Levin · Fred Roosta · Michael Mahoney · Carey Priebe -
2018 Oral: Out-of-sample extension of graph adjacency spectral embedding »
Keith Levin · Fred Roosta · Michael Mahoney · Carey Priebe -
2018 Poster: Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap »
Miles Lopes · Shusen Wang · Michael Mahoney -
2018 Oral: Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap »
Miles Lopes · Shusen Wang · Michael Mahoney -
2017 Poster: Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging »
Shusen Wang · Alex Gittens · Michael Mahoney -
2017 Poster: Capacity Releasing Diffusion for Speed and Locality. »
Di Wang · Kimon Fountoulakis · Monika Henzinger · Michael Mahoney · Satish Rao -
2017 Talk: Capacity Releasing Diffusion for Speed and Locality. »
Di Wang · Kimon Fountoulakis · Monika Henzinger · Michael Mahoney · Satish Rao -
2017 Talk: Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging »
Shusen Wang · Alex Gittens · Michael Mahoney