Timezone: »
Poster
RLSbench: Domain Adaptation Under Relaxed Label Shift
Saurabh Garg · Nick Erickson · University of California James Sharpnack · Alex Smola · Sivaraman Balakrishnan · Zachary Lipton
Event URL: https://sites.google.com/view/rlsbench/ »
Despite the emergence of principled methods for domain adaptation under label shift, their sensitivity to shifts in class conditional distributions is precariously under explored. Meanwhile, popular deep domain adaptation heuristics tend to falter when faced with label proportions shifts. While several papers modify these heuristics in attempts to handle label proportions shifts, inconsistencies in evaluation standards, datasets, and baselines make it difficult to gauge the current best practices. In this paper, we introduce RLSbench, a large-scale benchmark for *relaxed label shift*, consisting of $>$500 distribution shift pairs spanning vision, tabular, and language modalities, with varying label proportions. Unlike existing benchmarks, which primarily focus on shifts in class-conditional $p(x|y)$, our benchmark also focuses on label marginal shifts. First, we assess 13 popular domain adaptation methods, demonstrating more widespread failures under label proportion shifts than were previously known. Next, we develop an effective two-step meta-algorithm that is compatible with most domain adaptation heuristics: (i) *pseudo-balance* the data at each epoch; and (ii) adjust the final classifier with target label distribution estimate. The meta-algorithm improves existing domain adaptation heuristics under large label proportion shifts, often by 2--10% accuracy points, while conferring minimal effect ($<$0.5%) when label proportions do not shift. We hope that these findings and the availability of RLSbench will encourage researchers to rigorously evaluate proposed methods in relaxed label shift settings. Code is publicly available at https://github.com/acmi-lab/RLSbench.
Despite the emergence of principled methods for domain adaptation under label shift, their sensitivity to shifts in class conditional distributions is precariously under explored. Meanwhile, popular deep domain adaptation heuristics tend to falter when faced with label proportions shifts. While several papers modify these heuristics in attempts to handle label proportions shifts, inconsistencies in evaluation standards, datasets, and baselines make it difficult to gauge the current best practices. In this paper, we introduce RLSbench, a large-scale benchmark for *relaxed label shift*, consisting of $>$500 distribution shift pairs spanning vision, tabular, and language modalities, with varying label proportions. Unlike existing benchmarks, which primarily focus on shifts in class-conditional $p(x|y)$, our benchmark also focuses on label marginal shifts. First, we assess 13 popular domain adaptation methods, demonstrating more widespread failures under label proportion shifts than were previously known. Next, we develop an effective two-step meta-algorithm that is compatible with most domain adaptation heuristics: (i) *pseudo-balance* the data at each epoch; and (ii) adjust the final classifier with target label distribution estimate. The meta-algorithm improves existing domain adaptation heuristics under large label proportion shifts, often by 2--10% accuracy points, while conferring minimal effect ($<$0.5%) when label proportions do not shift. We hope that these findings and the availability of RLSbench will encourage researchers to rigorously evaluate proposed methods in relaxed label shift settings. Code is publicly available at https://github.com/acmi-lab/RLSbench.
Author Information
Saurabh Garg (Carnegie Mellon University)
Nick Erickson (Amazon)
University of California James Sharpnack (University of California, Davis)
Alex Smola (Amazon)
Sivaraman Balakrishnan (Carnegie Mellon University)
Zachary Lipton (CMU & Abridge)
More from the Same Authors
-
2021 : Multimodal AutoML on Structured Tables with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alex Smola -
2021 : Do You See What I See? A Comparison of Radiologist Eye Gaze to Computer Vision Saliency Maps for Chest X-ray Classification »
Jesse Kim · Helen Zhou · Zachary Lipton -
2021 : Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alex Smola -
2022 : Domain Adaptation under Open Set Label Shift »
Saurabh Garg · Sivaraman Balakrishnan · Zachary Lipton -
2022 : Unsupervised Learning under Latent Label Shift »
Pranav Mani · Manley Roberts · Saurabh Garg · Zachary Lipton -
2022 : Characterizing Datapoints via Second-Split Forgetting »
Pratyush Maini · Saurabh Garg · Zachary Lipton · Zico Kolter -
2022 : Adaptive Interest for Emphatic Reinforcement Learning »
Martin Klissarov · Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Taesup Kim · Alex Smola -
2022 : Counterfactual Metrics for Auditing Black-Box Recommender Systems for Ethical Concerns »
Nil-Jana Akpinar · Liu Leqi · Dylan Hadfield-Menell · Zachary Lipton -
2022 : RiskyZoo: A Library for Risk-Sensitive Supervised Learning »
William Wong · Audrey Huang · Liu Leqi · Kamyar Azizzadenesheli · Zachary Lipton -
2023 : Model-tuning Via Prompts Makes NLP Models Adversarially Robust »
Mrigank Raman · Pratyush Maini · Zico Kolter · Zachary Lipton · Danish Pruthi -
2023 : (Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy »
Elan Rosenfeld · Saurabh Garg -
2023 : Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift »
Saurabh Garg · Amrith Setlur · Zachary Lipton · Sivaraman Balakrishnan · Virginia Smith · Aditi Raghunathan -
2023 : (Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy »
Elan Rosenfeld · Saurabh Garg -
2023 : Deep Equilibrium Based Neural Operators for Steady-State PDEs »
Tanya Marwah · Ashwini Pokle · Zico Kolter · Zachary Lipton · Jianfeng Lu · Andrej Risteski -
2023 : How to Cope with Gradual Data Drift? »
Rasool Fakoor · Jonas Mueller · Zachary Lipton · Pratik Chaudhari · Alex Smola -
2023 : TMARS: Improving Visual Representations by Circumventing Text Feature Learning »
Pratyush Maini · Sachin Goyal · Zachary Lipton · Zico Kolter · Aditi Raghunathan -
2023 : Identifying Inequity in Treatment Allocation »
Yewon Byun · Dylan Sam · Zachary Lipton · Bryan Wilder -
2023 : Conditional Diffusion Replay for Continual Learning in Medical Settings »
Yewon Byun · Saurabh Garg · Sanket Vaibhav Mehta · Praveer Singh · Jayashree Kalpathy-cramer · Bryan Wilder · Zachary Lipton -
2023 : SCIS 2023 Panel, The Future of Generalization: Scale, Safety and Beyond »
Maggie Makar · Samuel Bowman · Zachary Lipton · Adam Gleave -
2023 : Prompt-based Generative Replay: A Text-to-Image Approach for Continual Learning in Medical Settings »
Yewon Byun · Saurabh Garg · Sanket Vaibhav Mehta · Jayashree Kalpathy-Cramer · Praveer Singh · Bryan Wilder · Zachary Lipton -
2023 : (Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy »
Elan Rosenfeld · Saurabh Garg -
2023 Poster: Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective »
Tanya Marwah · Zachary Lipton · Jianfeng Lu · Andrej Risteski -
2023 Poster: Can Neural Network Memorization Be Localized? »
Pratyush Maini · Michael Mozer · Hanie Sedghi · Zachary Lipton · Zico Kolter · Chiyuan Zhang -
2023 Poster: XTab: Cross-table Pretraining for Tabular Transformers »
Bingzhao Zhu · Xingjian Shi · Nick Erickson · Mu Li · George Karypis · Mahsa Shoaran -
2023 Poster: CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets »
Zachary Novack · Julian McAuley · Zachary Lipton · Saurabh Garg -
2022 : Discussion Panel »
Percy Liang · Léon Bottou · Jayashree Kalpathy-Cramer · Alex Smola -
2022 Workshop: Principles of Distribution Shift (PODS) »
Elan Rosenfeld · Saurabh Garg · Shibani Santurkar · Jamie Morgenstern · Hossein Mobahi · Zachary Lipton · Andrej Risteski -
2022 Poster: Supervised Learning with General Risk Functionals »
Liu Leqi · Audrey Huang · Zachary Lipton · Kamyar Azizzadenesheli -
2022 Poster: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2022 Spotlight: Supervised Learning with General Risk Functionals »
Liu Leqi · Audrey Huang · Zachary Lipton · Kamyar Azizzadenesheli -
2022 Oral: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2021 : RL Explainability & Interpretability Panel »
Ofra Amir · Finale Doshi-Velez · Alan Fern · Zachary Lipton · Omer Gottesman · Niranjani Prasad -
2021 Poster: Correcting Exposure Bias for Link Recommendation »
Shantanu Gupta · Hao Wang · Zachary Lipton · Yuyang Wang -
2021 Spotlight: Correcting Exposure Bias for Link Recommendation »
Shantanu Gupta · Hao Wang · Zachary Lipton · Yuyang Wang -
2021 Poster: RATT: Leveraging Unlabeled Data to Guarantee Generalization »
Saurabh Garg · Sivaraman Balakrishnan · Zico Kolter · Zachary Lipton -
2021 Oral: RATT: Leveraging Unlabeled Data to Guarantee Generalization »
Saurabh Garg · Sivaraman Balakrishnan · Zico Kolter · Zachary Lipton -
2021 Poster: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2020 : Panel Discussion »
Neil Lawrence · Mihaela van der Schaar · Alex Smola · Valerio Perrone · Jack Parker-Holder · Zhengying Liu -
2020 : "AutoGluon and Distillation" by Alex Smola »
Alex Smola -
2020 : Contributed Talk 3: A Unified View of Label Shift Estimation »
Saurabh Garg -
2020 Poster: Uncertainty-Aware Lookahead Factor Models for Quantitative Investing »
Lakshay Chauhan · John Alberg · Zachary Lipton -
2019 Poster: Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment »
Yifan Wu · Ezra Winston · Divyansh Kaushik · Zachary Lipton -
2019 Poster: What is the Effect of Importance Weighting in Deep Learning? »
Jonathon Byrd · Zachary Lipton -
2019 Oral: Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment »
Yifan Wu · Ezra Winston · Divyansh Kaushik · Zachary Lipton -
2019 Oral: What is the Effect of Importance Weighting in Deep Learning? »
Jonathon Byrd · Zachary Lipton -
2019 Poster: Deep Factors for Forecasting »
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski -
2019 Oral: Deep Factors for Forecasting »
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski -
2019 Tutorial: A Tutorial on Attention in Deep Learning »
Alex Smola · Aston Zhang -
2018 Poster: Detecting and Correcting for Label Shift with Black Box Predictors »
Zachary Lipton · Yu-Xiang Wang · Alexander Smola -
2018 Poster: Born Again Neural Networks »
Tommaso Furlanello · Zachary Lipton · Michael Tschannen · Laurent Itti · Anima Anandkumar -
2018 Oral: Born Again Neural Networks »
Tommaso Furlanello · Zachary Lipton · Michael Tschannen · Laurent Itti · Anima Anandkumar -
2018 Oral: Detecting and Correcting for Label Shift with Black Box Predictors »
Zachary Lipton · Yu-Xiang Wang · Alexander Smola -
2018 Poster: SQL-Rank: A Listwise Approach to Collaborative Ranking »
LIWEI WU · Cho-Jui Hsieh · University of California James Sharpnack -
2018 Oral: SQL-Rank: A Listwise Approach to Collaborative Ranking »
LIWEI WU · Cho-Jui Hsieh · University of California James Sharpnack -
2018 Poster: Nonparametric Regression with Comparisons: Escaping the Curse of Dimensionality with Ordinal Information »
Yichong Xu · Hariank Muthakana · Sivaraman Balakrishnan · Aarti Singh · Artur Dubrawski -
2018 Poster: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Nonparametric Regression with Comparisons: Escaping the Curse of Dimensionality with Ordinal Information »
Yichong Xu · Hariank Muthakana · Sivaraman Balakrishnan · Aarti Singh · Artur Dubrawski -
2017 Poster: Canopy --- Fast Sampling with Cover Trees »
Manzil Zaheer · Satwik Kottur · Amr Ahmed · Jose Moura · Alex Smola -
2017 Talk: Canopy --- Fast Sampling with Cover Trees »
Manzil Zaheer · Satwik Kottur · Amr Ahmed · Jose Moura · Alex Smola -
2017 Poster: Latent LSTM Allocation: Joint clustering and non-linear dynamic modeling of sequence data »
Manzil Zaheer · Amr Ahmed · Alex Smola -
2017 Talk: Latent LSTM Allocation: Joint clustering and non-linear dynamic modeling of sequence data »
Manzil Zaheer · Amr Ahmed · Alex Smola -
2017 Tutorial: Distributed Deep Learning with MxNet Gluon »
Alex Smola · Aran Khanna