Timezone: »
Poster
Target-based Surrogates for Stochastic Optimization
Jonathan Lavington · Sharan Vaswani · Reza Babanezhad · Mark Schmidt · Nicolas Le Roux
We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a *target space* (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the $SSO$ algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for $SSO$ when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of $SSO$.
Author Information
Jonathan Lavington (University of British Columbia, Vancouver)
Sharan Vaswani (Simon Fraser University)
Reza Babanezhad (Samsung)
Mark Schmidt (University of British Columbia)
Nicolas Le Roux (Microsoft)
More from the Same Authors
-
2021 : A functional mirror ascent view of policy gradient methods with function approximation »
Sharan Vaswani · Olivier Bachem · Simone Totaro · Matthieu Geist · Marlos C. Machado · Pablo Samuel Castro · Nicolas Le Roux -
2023 : Decision-Aware Actor-Critic with Function Approximation and Theoretical Guarantees »
Sharan Vaswani · Amirreza Kazemi · Reza Babanezhad · Nicolas Le Roux -
2023 Poster: Fast Online Node Labeling for Very Large Graphs »
Baojian Zhou · Yifan Sun · Reza Babanezhad -
2023 Poster: Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to Deep Learning »
Wu Lin · Valentin Duruisseaux · Melvin Leok · Frank Nielsen · Khan Emtiyaz · Mark Schmidt -
2023 Poster: Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence »
Julie Nutini · Issam Laradji · Mark Schmidt -
2022 Poster: Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic Gradient Descent »
Sharan Vaswani · Benjamin Dubois-Taine · Reza Babanezhad -
2022 Oral: Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic Gradient Descent »
Sharan Vaswani · Benjamin Dubois-Taine · Reza Babanezhad -
2021 Poster: Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport »
Lewis Liu · Yufeng Zhang · Zhuoran Yang · Reza Babanezhad · Zhaoran Wang -
2021 Spotlight: Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport »
Lewis Liu · Yufeng Zhang · Zhuoran Yang · Reza Babanezhad · Zhaoran Wang -
2021 Poster: Tractable structured natural-gradient descent using local parameterizations »
Wu Lin · Frank Nielsen · Khan Emtiyaz · Mark Schmidt -
2021 Spotlight: Tractable structured natural-gradient descent using local parameterizations »
Wu Lin · Frank Nielsen · Khan Emtiyaz · Mark Schmidt -
2021 Poster: Robust Asymmetric Learning in POMDPs »
Andrew Warrington · Jonathan Lavington · Adam Scibior · Mark Schmidt · Frank Wood -
2021 Poster: Beyond Variance Reduction: Understanding the True Impact of Baselines on Policy Optimization »
Wesley Chung · Valentin Thomas · Marlos C. Machado · Nicolas Le Roux -
2021 Spotlight: Beyond Variance Reduction: Understanding the True Impact of Baselines on Policy Optimization »
Wesley Chung · Valentin Thomas · Marlos C. Machado · Nicolas Le Roux -
2021 Oral: Robust Asymmetric Learning in POMDPs »
Andrew Warrington · Jonathan Lavington · Adam Scibior · Mark Schmidt · Frank Wood -
2020 Poster: Handling the Positive-Definite Constraint in the Bayesian Learning Rule »
Wu Lin · Mark Schmidt · Mohammad Emtiyaz Khan -
2019 Poster: Understanding the Impact of Entropy on Policy Optimization »
Zafarali Ahmed · Nicolas Le Roux · Mohammad Norouzi · Dale Schuurmans -
2019 Oral: Understanding the Impact of Entropy on Policy Optimization »
Zafarali Ahmed · Nicolas Le Roux · Mohammad Norouzi · Dale Schuurmans -
2019 Poster: Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations »
Wu Lin · Mohammad Emtiyaz Khan · Mark Schmidt -
2019 Poster: The Value Function Polytope in Reinforcement Learning »
Robert Dadashi · Marc Bellemare · Adrien Ali Taiga · Nicolas Le Roux · Dale Schuurmans -
2019 Oral: The Value Function Polytope in Reinforcement Learning »
Robert Dadashi · Marc Bellemare · Adrien Ali Taiga · Nicolas Le Roux · Dale Schuurmans -
2019 Oral: Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations »
Wu Lin · Mohammad Emtiyaz Khan · Mark Schmidt -
2017 Poster: Model-Independent Online Learning for Influence Maximization »
Sharan Vaswani · Branislav Kveton · Zheng Wen · Mohammad Ghavamzadeh · Laks V.S Lakshmanan · Mark Schmidt -
2017 Talk: Model-Independent Online Learning for Influence Maximization »
Sharan Vaswani · Branislav Kveton · Zheng Wen · Mohammad Ghavamzadeh · Laks V.S Lakshmanan · Mark Schmidt