Timezone: »
Multi-player online games depict the interaction of multiple players with each other over time. Strongly monotone games are of particular interest since they have benign properties and also relate to many classic games that have applications in real life. Existing works mainly focus on the time-invariant case with provable guarantees established. However, the research of the more general time-varying games in changing environments is underexplored and the best-known result cannot match the guarantees in the time-invariant case. In this work, we present a new decentralized online algorithm for time-varying strongly monotone games, which greatly improves existing results and obtains fast rates, matching the best time-invariant guarantee without knowing the environmental non-stationarity. Furthermore, to achieve faster rates, we generalize the RVU property with smoothness and establish a series of problem-dependent bounds that also match the best time-invariant one. To realize all those results, we make a comprehensive use of the techniques in non-stationary and universal online learning.
Author Information
Yu-Hu Yan (Nanjing University)
Peng Zhao (Nanjing University)
Zhi-Hua Zhou (Nanjing University)
More from the Same Authors
-
2022 : Optimal Rates of (Locally) Differentially Private Heavy-tailed Multi-Armed Bandits »
Yulian Wu · Youming Tao · Peng Zhao · Di Wang -
2023 Poster: Estimating Possible Causal Effects with Latent Variables via Adjustment »
Tian-Zuo Wang · Tian Qin · Zhi-Hua Zhou -
2023 Poster: Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization »
SIJIA CHEN · Wei-Wei Tu · Peng Zhao · Lijun Zhang -
2023 Poster: Identifying Useful Learnwares for Heterogeneous Label Spaces »
Lan-Zhe Guo · Zhi Zhou · Yu-Feng Li · Zhi-Hua Zhou -
2022 Poster: No-Regret Learning in Time-Varying Zero-Sum Games »
Mengxiao Zhang · Peng Zhao · Haipeng Luo · Zhi-Hua Zhou -
2022 Spotlight: No-Regret Learning in Time-Varying Zero-Sum Games »
Mengxiao Zhang · Peng Zhao · Haipeng Luo · Zhi-Hua Zhou -
2022 Poster: Dynamic Regret of Online Markov Decision Processes »
Peng Zhao · Long-Fei Li · Zhi-Hua Zhou -
2022 Spotlight: Dynamic Regret of Online Markov Decision Processes »
Peng Zhao · Long-Fei Li · Zhi-Hua Zhou -
2021 Poster: Budgeted Heterogeneous Treatment Effect Estimation »
Tian Qin · Tian-Zuo Wang · Zhi-Hua Zhou -
2021 Spotlight: Budgeted Heterogeneous Treatment Effect Estimation »
Tian Qin · Tian-Zuo Wang · Zhi-Hua Zhou -
2020 Poster: Cost-effectively Identifying Causal Effects When Only Response Variable is Observable »
Tian-Zuo Wang · Xi-Zhu Wu · Sheng-Jun Huang · Zhi-Hua Zhou -
2020 Poster: Learning with Feature and Distribution Evolvable Streams »
Zhen-Yu Zhang · Peng Zhao · Yuan Jiang · Zhi-Hua Zhou -
2019 Poster: Adaptive Regret of Convex and Smooth Functions »
Lijun Zhang · Tie-Yan Liu · Zhi-Hua Zhou -
2019 Oral: Adaptive Regret of Convex and Smooth Functions »
Lijun Zhang · Tie-Yan Liu · Zhi-Hua Zhou -
2019 Poster: Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin »
Xi-Zhu Wu · Song Liu · Zhi-Hua Zhou -
2019 Oral: Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin »
Xi-Zhu Wu · Song Liu · Zhi-Hua Zhou -
2018 Poster: Rectify Heterogeneous Models with Semantic Mapping »
Han-Jia Ye · De-Chuan Zhan · Yuan Jiang · Zhi-Hua Zhou -
2018 Poster: Dynamic Regret of Strongly Adaptive Methods »
Lijun Zhang · Tianbao Yang · rong jin · Zhi-Hua Zhou -
2018 Oral: Rectify Heterogeneous Models with Semantic Mapping »
Han-Jia Ye · De-Chuan Zhan · Yuan Jiang · Zhi-Hua Zhou -
2018 Oral: Dynamic Regret of Strongly Adaptive Methods »
Lijun Zhang · Tianbao Yang · rong jin · Zhi-Hua Zhou -
2017 Poster: A Unified View of Multi-Label Performance Measures »
Xi-Zhu Wu · Zhi-Hua Zhou -
2017 Talk: A Unified View of Multi-Label Performance Measures »
Xi-Zhu Wu · Zhi-Hua Zhou