Timezone: »
Deep ensemble is a simple yet powerful way to improve the performance of deep neural networks. Under this motivation, recent works on mode connectivity have shown that parameters of ensembles are connected by low-loss subspaces, and one can efficiently collect ensemble parameters in those subspaces. While this provides a way to efficiently train ensembles, for inference, multiple forward passes should still be executed using all the ensemble parameters, which often becomes a serious bottleneck for real-world deployment. In this work, we propose a novel framework to reduce such costs. Given a low-loss subspace connecting two modes of a neural network, we build an additional neural network that predicts the output of the original neural network evaluated at a certain point in the low-loss subspace. The additional neural network, which we call a ``bridge'', is a lightweight network that takes minimal features from the original network and predicts outputs for the low-loss subspace without forward passes through the original network. We empirically demonstrate that we can indeed train such bridge networks and significantly reduce inference costs with the help of bridge networks.
Author Information
EungGu Yun (Saige Research)
Hyungi Lee (KAIST)
Giung Nam (KAIST)
Juho Lee (KAIST, AITRICS)
More from the Same Authors
-
2023 : Function Space Bayesian Pseudocoreset for Bayesian Neural Networks »
Balhae Kim · Hyungi Lee · Juho Lee -
2023 : Early Exiting for Accelerated Inference in Diffusion Models »
Taehong Moon · Moonseok Choi · EungGu Yun · Jongmin Yoon · Gayoung Lee · Juho Lee -
2023 : Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion Models »
Sanghyun Kim · Seohyeon Jung · Balhae Kim · Moonseok Choi · Jinwoo Shin · Juho Lee -
2023 Poster: Probabilistic Imputation for Time-series Classification with Missing Data »
SeungHyun Kim · Hyunsu Kim · EungGu Yun · Hwangrae Lee · Jaehun Lee · Juho Lee -
2023 Poster: Regularizing Towards Soft Equivariance Under Mixed Symmetries »
Hyunsu Kim · Hyungi Lee · Hongseok Yang · Juho Lee -
2023 Poster: Scalable Set Encoding with Universal Mini-Batch Consistency and Unbiased Full Set Gradient Approximation »
Jeffrey Willette · Seanie Lee · Bruno Andreis · Kenji Kawaguchi · Juho Lee · Sung Ju Hwang -
2022 Poster: Improving Ensemble Distillation With Weight Averaging and Diversifying Perturbation »
Giung Nam · Hyungi Lee · Byeongho Heo · Juho Lee -
2022 Poster: Set Based Stochastic Subsampling »
Bruno Andreis · Seanie Lee · A. Tuan Nguyen · Juho Lee · Eunho Yang · Sung Ju Hwang -
2022 Spotlight: Set Based Stochastic Subsampling »
Bruno Andreis · Seanie Lee · A. Tuan Nguyen · Juho Lee · Eunho Yang · Sung Ju Hwang -
2022 Spotlight: Improving Ensemble Distillation With Weight Averaging and Diversifying Perturbation »
Giung Nam · Hyungi Lee · Byeongho Heo · Juho Lee -
2021 Poster: Adversarial Purification with Score-based Generative Models »
Jongmin Yoon · Sung Ju Hwang · Juho Lee -
2021 Spotlight: Adversarial Purification with Score-based Generative Models »
Jongmin Yoon · Sung Ju Hwang · Juho Lee