Timezone: »
Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t. a Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We prove a faster linear convergence result when a Polyak-Łojasiewicz (PŁ) condition holds. To our knowledge, this work is the first to provide non-asymptotic convergence guarantees --- variance-reduced or not --- for a cyclic block coordinate method in general composite (smooth + nonsmooth) nonconvex settings. Our experimental results demonstrate the efficacy of the proposed cyclic scheme in training deep neural nets.
Author Information
Xufeng Cai (UW-Madison)
Chaobing Song (University of Wisconsin-Madison)
Stephen Wright (University of Wisconsin-Madison)
Jelena Diakonikolas (University of Wisconsin-Madison)
More from the Same Authors
-
2023 Oral: A Fully First-Order Method for Stochastic Bilevel Optimization »
Jeongyeol Kwon · Dohyun Kwon · Stephen Wright · Robert Nowak -
2023 Oral: Robustly Learning a Single Neuron via Sharpness »
Puqian Wang · Nikos Zarifis · Ilias Diakonikolas · Jelena Diakonikolas -
2023 Poster: Cut your Losses with Squentropy »
Like Hui · Misha Belkin · Stephen Wright -
2023 Poster: Robustly Learning a Single Neuron via Sharpness »
Puqian Wang · Nikos Zarifis · Ilias Diakonikolas · Jelena Diakonikolas -
2023 Poster: A Fully First-Order Method for Stochastic Bilevel Optimization »
Jeongyeol Kwon · Dohyun Kwon · Stephen Wright · Robert Nowak -
2023 Poster: Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for Composite Convex Optimization »
Cheuk Yin Lin · Chaobing Song · Jelena Diakonikolas -
2021 Poster: Variance Reduction via Primal-Dual Accelerated Dual Averaging for Nonsmooth Convex Finite-Sums »
Chaobing Song · Stephen Wright · Jelena Diakonikolas -
2021 Poster: Parameter-free Locally Accelerated Conditional Gradients »
Alejandro Carderera · Jelena Diakonikolas · Cheuk Yin Lin · Sebastian Pokutta -
2021 Spotlight: Parameter-free Locally Accelerated Conditional Gradients »
Alejandro Carderera · Jelena Diakonikolas · Cheuk Yin Lin · Sebastian Pokutta -
2021 Oral: Variance Reduction via Primal-Dual Accelerated Dual Averaging for Nonsmooth Convex Finite-Sums »
Chaobing Song · Stephen Wright · Jelena Diakonikolas -
2019 Poster: First-Order Algorithms Converge Faster than $O(1/k)$ on Convex Problems »
Ching-pei Lee · Stephen Wright -
2019 Poster: Bilinear Bandits with Low-rank Structure »
Kwang-Sung Jun · Rebecca Willett · Stephen Wright · Robert Nowak -
2019 Oral: First-Order Algorithms Converge Faster than $O(1/k)$ on Convex Problems »
Ching-pei Lee · Stephen Wright -
2019 Oral: Bilinear Bandits with Low-rank Structure »
Kwang-Sung Jun · Rebecca Willett · Stephen Wright · Robert Nowak -
2019 Poster: Blended Conditonal Gradients »
Gábor Braun · Sebastian Pokutta · Dan Tu · Stephen Wright -
2019 Oral: Blended Conditonal Gradients »
Gábor Braun · Sebastian Pokutta · Dan Tu · Stephen Wright -
2018 Poster: Dissipativity Theory for Accelerating Stochastic Variance Reduction: A Unified Analysis of SVRG and Katyusha Using Semidefinite Programs »
Bin Hu · Stephen Wright · Laurent Lessard -
2018 Oral: Dissipativity Theory for Accelerating Stochastic Variance Reduction: A Unified Analysis of SVRG and Katyusha Using Semidefinite Programs »
Bin Hu · Stephen Wright · Laurent Lessard