Timezone: »
Poster
Hiding Data Helps: On the Benefits of Masking for Sparse Coding
Muthu Chidambaram · Chenwei Wu · Yu Cheng · Rong Ge
Sparse coding, which refers to modeling a signal as sparse linear combinations of the elements of a learned dictionary, has proven to be a successful (and interpretable) approach in applications such as signal processing, computer vision, and medical imaging. While this success has spurred much work on provable guarantees for dictionary recovery when the learned dictionary is the same size as the ground-truth dictionary, work on the setting where the learned dictionary is larger (or $\textit{over-realized}$) with respect to the ground truth is comparatively nascent. Existing theoretical results in this setting have been constrained to the case of noise-less data. We show in this work that, in the presence of noise, minimizing the standard dictionary learning objective can fail to recover the elements of the ground-truth dictionary in the over-realized regime, regardless of the magnitude of the signal in the data-generating process. Furthermore, drawing from the growing body of work on self-supervised learning, we propose a novel masking objective for which recovering the ground-truth dictionary is in fact optimal as the signal increases for a large class of data-generating processes. We corroborate our theoretical results with experiments across several parameter regimes showing that our proposed objective also enjoys better empirical performance than the standard reconstruction objective.
Author Information
Muthu Chidambaram (Duke)
Chenwei Wu (Duke University)
Yu Cheng (University of Illinois at Chicago)
Rong Ge (Duke University)
More from the Same Authors
-
2023 : The Role of Linguistic Priors in Measuring Compositional Generalization of Vision-language Models »
Chenwei Wu · Li Li · Stefano Ermon · Patrick Haffner · Rong Ge · Zaiwei Zhang -
2023 Poster: Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression »
Mo Zhou · Rong Ge -
2023 Poster: Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup »
Muthu Chidambaram · Xiang Wang · Chenwei Wu · Rong Ge -
2022 Poster: Online Algorithms with Multiple Predictions »
Keerti Anand · Rong Ge · Amit Kumar · Debmalya Panigrahi -
2022 Spotlight: Online Algorithms with Multiple Predictions »
Keerti Anand · Rong Ge · Amit Kumar · Debmalya Panigrahi -
2022 Poster: Extracting Latent State Representations with Linear Dynamics from Rich Observations »
Abraham Frandsen · Rong Ge · Holden Lee -
2022 Spotlight: Extracting Latent State Representations with Linear Dynamics from Rich Observations »
Abraham Frandsen · Rong Ge · Holden Lee -
2021 Poster: Guarantees for Tuning the Step Size using a Learning-to-Learn Approach »
Xiang Wang · Shuai Yuan · Chenwei Wu · Rong Ge -
2021 Spotlight: Guarantees for Tuning the Step Size using a Learning-to-Learn Approach »
Xiang Wang · Shuai Yuan · Chenwei Wu · Rong Ge -
2020 Poster: High-dimensional Robust Mean Estimation via Gradient Descent »
Yu Cheng · Ilias Diakonikolas · Rong Ge · Mahdi Soltanolkotabi -
2020 Poster: Customizing ML Predictions for Online Algorithms »
Keerti Anand · Rong Ge · Debmalya Panigrahi -
2018 Poster: Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator »
Maryam Fazel · Rong Ge · Sham Kakade · Mehran Mesbahi -
2018 Oral: Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator »
Maryam Fazel · Rong Ge · Sham Kakade · Mehran Mesbahi -
2018 Poster: Stronger Generalization Bounds for Deep Nets via a Compression Approach »
Sanjeev Arora · Rong Ge · Behnam Neyshabur · Yi Zhang -
2018 Oral: Stronger Generalization Bounds for Deep Nets via a Compression Approach »
Sanjeev Arora · Rong Ge · Behnam Neyshabur · Yi Zhang -
2017 Poster: How to Escape Saddle Points Efficiently »
Chi Jin · Rong Ge · Praneeth Netrapalli · Sham Kakade · Michael Jordan -
2017 Talk: How to Escape Saddle Points Efficiently »
Chi Jin · Rong Ge · Praneeth Netrapalli · Sham Kakade · Michael Jordan -
2017 Poster: No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis »
Rong Ge · Chi Jin · Yi Zheng -
2017 Poster: Generalization and Equilibrium in Generative Adversarial Nets (GANs) »
Sanjeev Arora · Rong Ge · Yingyu Liang · Tengyu Ma · Yi Zhang -
2017 Talk: No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis »
Rong Ge · Chi Jin · Yi Zheng -
2017 Talk: Generalization and Equilibrium in Generative Adversarial Nets (GANs) »
Sanjeev Arora · Rong Ge · Yingyu Liang · Tengyu Ma · Yi Zhang