Timezone: »
Reinforcement learning (RL) agents typically learn tabula rasa, without prior knowledge of the world. However, if initialized with knowledge of high-level subgoals and transitions between subgoals, RL agents could utilize this Abstract World Model (AWM) for planning and exploration. We propose using few-shot large language models (LLMs) to hypothesize an AWM, that will be verified through world experience, to improve sample efficiency of RL agents. Our DECKARD agent applies LLM-guided exploration to item crafting in Minecraft in two phases: (1) the Dream phase where the agent uses an LLM to decompose a task into a sequence of subgoals, the hypothesized AWM; and (2) the Wake phase where the agent learns a modular policy for each subgoal and verifies or corrects the hypothesized AWM. Our method of hypothesizing an AWM with LLMs and then verifying the AWM based on agent experience not only increases sample efficiency over contemporary methods by an order of magnitude but is also robust to and corrects errors in the LLM, successfully blending noisy internet-scale information from LLMs with knowledge grounded in environment dynamics.
Author Information
Kolby Nottingham (University of California, Irvine)
Prithviraj Ammanabrolu (Allen Institute for Artificial Intelligence)
Alane Suhr (Allen Institute for AI)
Yejin Choi (University of Washington)
Hannaneh Hajishirzi (University of Washington)
Sameer Singh (University of California, Irvine)
Roy Fox (UCI)
More from the Same Authors
-
2021 : Feature Attributions and Counterfactual Explanations Can Be Manipulated »
· Dylan Slack · Sophie Hilgard · Sameer Singh · Hima Lakkaraju -
2021 : Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Sophie Hilgard · Sameer Singh · Hima Lakkaraju -
2021 : Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Sophie Hilgard · Sameer Singh · Hima Lakkaraju -
2023 : SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks »
Yuchen Lin · Yicheng Fu · Karina Yang · Prithviraj Ammanabrolu · Faeze Brahman · Shiyu Huang · Chandra Bhagavatula · Yejin Choi · Xiang Ren -
2023 : Minding Language Models' (Lack of) Theory of Mind: A Plug-and-Play Multi-Character Belief Tracker »
Melanie Sclar · Sachin Kumar · Peter West · Alane Suhr · Yejin Choi · Yulia Tsvetkov -
2023 : Minding Language Models' (Lack of) Theory of Mind: A Plug-and-Play Multi-Character Belief Tracker »
Melanie Sclar · Sachin Kumar · Peter West · Alane Suhr · Yejin Choi · Yulia Tsvetkov -
2023 Workshop: Workshop on Theory of Mind in Communicating Agents »
Hao Zhu · Jennifer Hu · Hyunwoo Kim · Alane Suhr · Saujas Vaduguru · Chenghao Yang · Pei Zhou · Xuhui Zhou -
2023 Poster: Learning to Design Analog Circuits to Meet Threshold Specifications »
Dmitrii Krylov · Pooya Khajeh · Junhan Ouyang · Thomas Reeves · Tongkai Liu · Hiba Ajmal · Hamidreza Aghasi · Roy Fox -
2022 Poster: Understanding Dataset Difficulty with $\mathcal{V}$-Usable Information »
Kawin Ethayarajh · Yejin Choi · Swabha Swayamdipta -
2022 Oral: Understanding Dataset Difficulty with $\mathcal{V}$-Usable Information »
Kawin Ethayarajh · Yejin Choi · Swabha Swayamdipta -
2021 Poster: Calibrate Before Use: Improving Few-shot Performance of Language Models »
Tony Z. Zhao · Eric Wallace · Shi Feng · Dan Klein · Sameer Singh -
2021 Oral: Calibrate Before Use: Improving Few-shot Performance of Language Models »
Tony Z. Zhao · Eric Wallace · Shi Feng · Dan Klein · Sameer Singh -
2020 Poster: Adversarial Filters of Dataset Biases »
Ronan Le Bras · Swabha Swayamdipta · Chandra Bhagavatula · Rowan Zellers · Matthew Peters · Ashish Sabharwal · Yejin Choi