Timezone: »
The noise transition matrix plays a central role in the problem of learning with noisy labels. Among many other reasons, a large number of existing solutions rely on the knowledge of it. Identifying and estimating the transition matrix without ground truth labels is a critical and challenging task. When label noise transition depends on each instance, the problem of identifying the instance-dependent noise transition matrix becomes substantially more challenging. Despite recently proposed solutions for learning from instance-dependent noisy labels, the literature lacks a unified understanding of when such a problem remains identifiable. The goal of this paper is to characterize the identifiability of the label noise transition matrix. Building on Kruskal's identifiability results, we are able to show the necessity of multiple noisy labels in identifying the noise transition matrix at the instance level. We further instantiate the results to explain the successes of the state-of-the-art solutions and how additional assumptions alleviated the requirement of multiple noisy labels. Our result reveals that disentangled features improve identification. This discovery led us to an approach that improves the estimation of the transition matrix using properly disentangled features. Code is available at https://github.com/UCSC-REAL/Identifiability.
Author Information
Yang Liu (UC Santa Cruz/ByteDance Research)
Hao Cheng (University of California, Santa Cruz)
Kun Zhang (Carnegie Mellon University)
More from the Same Authors
-
2020 : Contributed Talk: Incentives for Federated Learning: a Hypothesis Elicitation Approach »
Yang Liu · Jiaheng Wei -
2020 : Contributed Talk: Linear Models are Robust Optimal Under Strategic Behavior »
Wei Tang · Chien-Ju Ho · Yang Liu -
2021 : Linear Classifiers that Encourage Constructive Adaptation »
Yatong Chen · Jialu Wang · Yang Liu -
2021 : When Optimizing f-divergence is Robust with Label Noise »
Jiaheng Wei · Yang Liu -
2021 : Optimal transport for causal discovery »
Ruibo Tu · Kun Zhang · Hedvig Kjellström · Cheng Zhang -
2022 : Causal Balancing for Domain Generalization »
Xinyi Wang · Michael Saxon · Jiachen Li · Hongyang Zhang · Kun Zhang · William Wang -
2022 : Adaptive Data Debiasing Through Bounded Exploration »
Yifan Yang · Yang Liu · Parinaz Naghizadeh -
2023 : Counterfactual Generation with Identifiability Guarantees »
Hanqi Yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 : Identification of Nonlinear Latent Hierarchical Causal Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 : Advancing Counterfactual Inference through Quantile Regression »
Shaoan Xie · Biwei Huang · Bin Gu · Tongliang Liu · Kun Zhang -
2023 : Natural Counterfactuals With Necessary Backtracking »
Guangyuan Hao · Jiji Zhang · Hao Wang · Kun Zhang -
2023 : To Aggregate or Not? Learning with Separate Noisy Labels »
Jiaheng Wei · Zhaowei Zhu · Tianyi Luo · Ehsan Amid · Abhishek Kumar · Yang Liu -
2023 : Understanding Unfairness via Training Concept Influence »
Yuanshun Yao · Yang Liu -
2023 : Towards an Efficient Algorithm for Time Series Forecasting with Anomalies »
Hao Cheng · Qingsong Wen · Yang Liu · Liang Sun -
2023 : Natural Counterfactuals With Necessary Backtracking »
Guangyuan Hao · Jiji Zhang · Hao Wang · Kun Zhang -
2023 Workshop: DMLR Workshop: Data-centric Machine Learning Research »
Ce Zhang · Praveen Paritosh · Newsha Ardalani · Nezihe Merve Gürel · William Gaviria Rojas · Yang Liu · Rotem Dror · Manil Maskey · Lilith Bat-Leah · Tzu-Sheng Kuo · Luis Oala · Max Bartolo · Ludwig Schmidt · Alicia Parrish · Daniel Kondermann · Najoung Kim -
2023 Poster: Weak Proxies are Sufficient and Preferable for Fairness with Missing Sensitive Attributes »
Zhaowei Zhu · Yuanshun Yao · Jiankai Sun · Hang Li · Yang Liu -
2023 Poster: Causal Discovery with Latent Confounders Based on Higher-Order Cumulants »
Ruichu Cai · Zhiyi Huang · Wei Chen · Zhifeng Hao · Kun Zhang -
2023 Poster: Feature Expansion for Graph Neural Networks »
Jiaqi Sun · Lin Zhang · Guangyi Chen · Peng XU · Kun Zhang · Yujiu Yang -
2023 Poster: Model Transferability with Responsive Decision Subjects »
Yatong Chen · Zeyu Tang · Kun Zhang · Yang Liu -
2023 Poster: Evolving Semantic Prototype Improves Generative Zero-Shot Learning »
Shiming Chen · Wenjin Hou · Ziming Hong · Xiaohan Ding · Yibing Song · Xinge You · Tongliang Liu · Kun Zhang -
2023 Poster: Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise? »
Yu Yao · Mingming Gong · Yuxuan Du · Jun Yu · Bo Han · Kun Zhang · Tongliang Liu -
2022 : Model Transferability With Responsive Decision Subjects »
Yang Liu · Yatong Chen · Zeyu Tang · Kun Zhang -
2022 Poster: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Detecting Corrupted Labels Without Training a Model to Predict »
Zhaowei Zhu · Zihao Dong · Yang Liu -
2022 Poster: Understanding Instance-Level Impact of Fairness Constraints »
Jialu Wang · Xin Eric Wang · Yang Liu -
2022 Spotlight: Understanding Instance-Level Impact of Fairness Constraints »
Jialu Wang · Xin Eric Wang · Yang Liu -
2022 Spotlight: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Identification of Linear Non-Gaussian Latent Hierarchical Structure »
Feng Xie · Biwei Huang · Zhengming Chen · Yangbo He · zhi geng · Kun Zhang -
2022 Poster: Metric-Fair Classifier Derandomization »
Jimmy Wu · Yatong Chen · Yang Liu -
2022 Poster: Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features »
Zhaowei Zhu · Jialu Wang · Yang Liu -
2022 Poster: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Detecting Corrupted Labels Without Training a Model to Predict »
Zhaowei Zhu · Zihao Dong · Yang Liu -
2022 Spotlight: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Metric-Fair Classifier Derandomization »
Jimmy Wu · Yatong Chen · Yang Liu -
2022 Spotlight: Identification of Linear Non-Gaussian Latent Hierarchical Structure »
Feng Xie · Biwei Huang · Zhengming Chen · Yangbo He · zhi geng · Kun Zhang -
2022 Spotlight: Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features »
Zhaowei Zhu · Jialu Wang · Yang Liu -
2022 Poster: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2022 Poster: Partial disentanglement for domain adaptation »
Lingjing Kong · Shaoan Xie · Weiran Yao · Yujia Zheng · Guangyi Chen · Petar Stojanov · Victor Akinwande · Kun Zhang -
2022 Spotlight: Partial disentanglement for domain adaptation »
Lingjing Kong · Shaoan Xie · Weiran Yao · Yujia Zheng · Guangyi Chen · Petar Stojanov · Victor Akinwande · Kun Zhang -
2022 Oral: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2021 Poster: Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels »
Zhaowei Zhu · Yiwen Song · Yang Liu -
2021 Spotlight: Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels »
Zhaowei Zhu · Yiwen Song · Yang Liu -
2021 Poster: Understanding Instance-Level Label Noise: Disparate Impacts and Treatments »
Yang Liu -
2021 Oral: Understanding Instance-Level Label Noise: Disparate Impacts and Treatments »
Yang Liu -
2020 Workshop: Incentives in Machine Learning »
Boi Faltings · Yang Liu · David Parkes · Goran Radanovic · Dawn Song -
2020 Poster: Label-Noise Robust Domain Adaptation »
Xiyu Yu · Tongliang Liu · Mingming Gong · Kun Zhang · Kayhan Batmanghelich · Dacheng Tao -
2020 Poster: Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates »
Yang Liu · Hongyi Guo -
2020 Poster: LTF: A Label Transformation Framework for Correcting Label Shift »
Jiaxian Guo · Mingming Gong · Tongliang Liu · Kun Zhang · Dacheng Tao -
2020 Poster: Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs »
AmirEmad Ghassami · Alan Yang · Negar Kiyavash · Kun Zhang -
2019 Poster: Fairness without Harm: Decoupled Classifiers with Preference Guarantees »
Berk Ustun · Yang Liu · David Parkes -
2019 Oral: Fairness without Harm: Decoupled Classifiers with Preference Guarantees »
Berk Ustun · Yang Liu · David Parkes -
2019 Poster: Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models »
Biwei Huang · Kun Zhang · Mingming Gong · Clark Glymour -
2019 Oral: Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models »
Biwei Huang · Kun Zhang · Mingming Gong · Clark Glymour -
2019 Poster: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon -
2019 Oral: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon