Timezone: »
Poster
Differentially Private Hierarchical Clustering with Provable Approximation Guarantees
Jacob Imola · Alessandro Epasto · Mohammad Mahdian · Vincent Cohen-Addad · Vahab Mirrokni
Hierarchical Clustering is a popular unsupervised machine learning method with decades of history and numerous applications. We initiate the study of *differentially-private* approximation algorithms for hierarchical clustering under the rigorous framework introduced by Dasgupta (2016). We show strong lower bounds for the problem: that any $\epsilon$-DP algorithm must exhibit $O(|V|^2/ \epsilon)$-additive error for an input dataset $V$. Then, we exhibit a polynomial-time approximation algorithm with $O(|V|^{2.5}/ \epsilon)$-additive error, and an exponential-time algorithm that meets the lower bound. To overcome the lower bound, we focus on the stochastic block model, a popular model of graphs, and, with a separation assumption on the blocks, propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly. Finally, we perform an empirical study of our algorithms and validate their performance.
Author Information
Jacob Imola (UC San Diego)
Alessandro Epasto (Google)
Mohammad Mahdian (Google)
Vincent Cohen-Addad (Google, Switzerland)
Vahab Mirrokni (Google Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Oral: Differentially Private Hierarchical Clustering with Provable Approximation Guarantees »
Thu. Jul 27th 02:08 -- 02:16 AM Room Meeting Room 316 A-C
More from the Same Authors
-
2021 : Privacy Amplification by Bernoulli Sampling »
Jacob Imola · Kamalika Chaudhuri -
2021 : Label differential privacy via clustering »
Hossein Esfandiari · Vahab Mirrokni · Umar Syed · Sergei Vassilvitskii -
2023 : Tackling Provably Hard Representative Selection viaGraph Neural Networks »
Mehran Kazemi · Anton Tsitsulin · Hossein Esfandiari · Mohammad Hossein Bateni · Deepak Ramachandran · Bryan Perozzi · Vahab Mirrokni -
2023 : Sequential Attention for Feature Selection »
Taisuke Yasuda · Mohammad Hossein Bateni · Lin Chen · Matthew Fahrbach · Thomas Fu · Vahab Mirrokni -
2023 : Differentially Private Clustering in Data Streams »
Alessandro Epasto · Tamalika Mukherjee · Peilin Zhong -
2023 : k-Means Clustering with Distance-Based Privacy »
Alessandro Epasto · Vahab Mirrokni · Shyam Narayanan · Peilin Zhong -
2023 Oral: Robust Budget Pacing with a Single Sample »
Santiago Balseiro · Rachitesh Kumar · Vahab Mirrokni · Balasubramanian Sivan · Di Wang -
2023 Poster: Robust Budget Pacing with a Single Sample »
Santiago Balseiro · Rachitesh Kumar · Vahab Mirrokni · Balasubramanian Sivan · Di Wang -
2023 Poster: Robust and private stochastic linear bandits »
Vasilis Charisopoulos · Hossein Esfandiari · Vahab Mirrokni -
2023 Poster: Learning Rate Schedules in the Presence of Distribution Shift »
Matthew Fahrbach · Adel Javanmard · Vahab Mirrokni · Pratik Worah -
2023 Poster: Multi-channel Autobidding with Budget and ROI Constraints »
Yuan Deng · Negin Golrezaei · Patrick Jaillet · Jason Cheuk Nam Liang · Vahab Mirrokni -
2023 Poster: Approximately Optimal Core Shapes for Tensor Decompositions »
Mehrdad Ghadiri · Matthew Fahrbach · Thomas Fu · Vahab Mirrokni -
2021 Poster: Improving Ultrametrics Embeddings Through Coresets »
Vincent Cohen-Addad · Rémi de Joannis de Verclos · Guillaume Lagarde -
2021 Spotlight: Improving Ultrametrics Embeddings Through Coresets »
Vincent Cohen-Addad · Rémi de Joannis de Verclos · Guillaume Lagarde -
2020 Poster: On Efficient Low Distortion Ultrametric Embedding »
Vincent Cohen-Addad · Karthik C. S. · Guillaume Lagarde