Timezone: »
Poster
Adapting to game trees in zero-sum imperfect information games
Côme Fiegel · Pierre Menard · Tadashi Kozuno · Remi Munos · Vianney Perchet · Michal Valko
Imperfect information games (IIG) are games in which each player only partially observes the current game state. We study how to learn $\epsilon$-optimal strategies in a zero-sum IIG through self-play with trajectory feedback. We give a problem-independent lower bound $\widetilde{\mathcal{O}}(H(A_{\mathcal{X}}+B_{\mathcal{Y}})/\epsilon^2)$ on the required number of realizations to learn these strategies with high probability, where $H$ is the length of the game, $A_{\mathcal{X}}$ and $B_{\mathcal{Y}}$ are the total number of actions for the two players. We also propose two Follow the Regularized leader (FTRL) algorithms for this setting: Balanced FTRL which matches this lower bound, but requires the knowledge of the information set structure beforehand to define the regularization; and Adaptive FTRL which needs $\widetilde{\mathcal{O}}(H^2(A_{\mathcal{X}}+B_{\mathcal{Y}})/\epsilon^2)$ realizations without this requirement by progressively adapting the regularization to the observations.
Author Information
Côme Fiegel (CREST-ENSAE)
Pierre Menard (ENS Lyon)
Tadashi Kozuno (Omron Sinic X)
Remi Munos (DeepMind)
Vianney Perchet (ENS Paris-Saclay & Criteo AI Lab)
Michal Valko (Google DeepMind / Inria / MVA)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Oral: Adapting to game trees in zero-sum imperfect information games »
Thu. Jul 27th 02:08 -- 02:16 AM Room Ballroom A
More from the Same Authors
-
2021 : Bridging The Gap between Local and Joint Differential Privacy in RL »
Evrard Garcelon · Vianney Perchet · Ciara Pike-Burke · Matteo Pirotta -
2021 : Density-Based Bonuses on Learned Representations for Reward-Free Exploration in Deep Reinforcement Learning »
Omar Darwiche Domingues · Corentin Tallec · Remi Munos · Michal Valko -
2023 Poster: Understanding Self-Predictive Learning for Reinforcement Learning »
Yunhao Tang · Zhaohan Guo · Pierre Richemond · Bernardo Avila Pires · Yash Chandak · Remi Munos · Mark Rowland · Mohammad Gheshlaghi Azar · Charline Le Lan · Clare Lyle · Andras Gyorgy · Shantanu Thakoor · Will Dabney · Bilal Piot · Daniele Calandriello · Michal Valko -
2023 Poster: Half-Hop: A graph upsampling approach for slowing down message passing »
Mehdi Azabou · Venkataramana Ganesh · Shantanu Thakoor · Chi-Heng Lin · Lakshmi Sathidevi · Ran Liu · Michal Valko · Petar Veličković · Eva Dyer -
2023 Poster: Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments »
Daniel Jarrett · Corentin Tallec · Florent Altché · Thomas Mesnard · Remi Munos · Michal Valko -
2023 Poster: Representations and Exploration for Deep Reinforcement Learning using Singular Value Decomposition »
Yash Chandak · Shantanu Thakoor · Zhaohan Guo · Yunhao Tang · Remi Munos · Will Dabney · Diana Borsa -
2023 Poster: Towards a better understanding of representation dynamics under TD-learning »
Yunhao Tang · Remi Munos -
2023 Poster: Fast Rates for Maximum Entropy Exploration »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Pierre Perrault · Yunhao Tang · Michal Valko · Pierre Menard -
2023 Oral: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: The Statistical Benefits of Quantile Temporal-Difference Learning for Value Estimation »
Mark Rowland · Yunhao Tang · Clare Lyle · Remi Munos · Marc Bellemare · Will Dabney -
2023 Poster: On Preemption and Learning in Stochastic Scheduling »
Nadav Merlis · Hugo Richard · Flore Sentenac · Corentin Odic · Mathieu Molina · Vianney Perchet -
2023 Poster: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: DoMo-AC: Doubly Multi-step Off-policy Actor-Critic Algorithm »
Yunhao Tang · Tadashi Kozuno · Mark Rowland · Anna Harutyunyan · Remi Munos · Bernardo Avila Pires · Michal Valko -
2023 Poster: VA-learning as a more efficient alternative to Q-learning »
Yunhao Tang · Remi Munos · Mark Rowland · Michal Valko -
2023 Poster: Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice »
Toshinori Kitamura · Tadashi Kozuno · Yunhao Tang · Nino Vieillard · Michal Valko · Wenhao Yang · Jincheng Mei · Pierre Menard · Mohammad Gheshlaghi Azar · Remi Munos · Olivier Pietquin · Matthieu Geist · Csaba Szepesvari · Wataru Kumagai · Yutaka Matsuo -
2022 : Decentralized Learning in Online Queuing Systems »
Vianney Perchet -
2022 Poster: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Poster: Generalised Policy Improvement with Geometric Policy Composition »
Shantanu Thakoor · Mark Rowland · Diana Borsa · Will Dabney · Remi Munos · Andre Barreto -
2022 Oral: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Oral: Generalised Policy Improvement with Geometric Policy Composition »
Shantanu Thakoor · Mark Rowland · Diana Borsa · Will Dabney · Remi Munos · Andre Barreto -
2021 Poster: Problem Dependent View on Structured Thresholding Bandit Problems »
James Cheshire · Pierre Menard · Alexandra Carpentier -
2021 Spotlight: Problem Dependent View on Structured Thresholding Bandit Problems »
James Cheshire · Pierre Menard · Alexandra Carpentier -
2021 Poster: Fast active learning for pure exploration in reinforcement learning »
Pierre Menard · Omar Darwiche Domingues · Anders Jonsson · Emilie Kaufmann · Edouard Leurent · Michal Valko -
2021 Poster: UCB Momentum Q-learning: Correcting the bias without forgetting »
Pierre Menard · Omar Darwiche Domingues · Xuedong Shang · Michal Valko -
2021 Spotlight: Fast active learning for pure exploration in reinforcement learning »
Pierre Menard · Omar Darwiche Domingues · Anders Jonsson · Emilie Kaufmann · Edouard Leurent · Michal Valko -
2021 Oral: UCB Momentum Q-learning: Correcting the bias without forgetting »
Pierre Menard · Omar Darwiche Domingues · Xuedong Shang · Michal Valko -
2019 Poster: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Oral: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2018 Poster: The Uncertainty Bellman Equation and Exploration »
Brendan O'Donoghue · Ian Osband · Remi Munos · Vlad Mnih -
2018 Poster: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: Autoregressive Quantile Networks for Generative Modeling »
Georg Ostrovski · Will Dabney · Remi Munos -
2018 Oral: The Uncertainty Bellman Equation and Exploration »
Brendan O'Donoghue · Ian Osband · Remi Munos · Vlad Mnih -
2018 Oral: Autoregressive Quantile Networks for Generative Modeling »
Georg Ostrovski · Will Dabney · Remi Munos -
2018 Oral: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Poster: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2018 Poster: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Oral: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2017 Poster: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Talk: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Poster: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Poster: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Poster: Minimax Regret Bounds for Reinforcement Learning »
Mohammad Gheshlaghi Azar · Ian Osband · Remi Munos -
2017 Talk: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Talk: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Talk: Minimax Regret Bounds for Reinforcement Learning »
Mohammad Gheshlaghi Azar · Ian Osband · Remi Munos