Timezone: »
Models trained on one set of domains often suffer performance drops on unseen domains, e.g., when wildlife monitoring models are deployed in new camera locations. In this work, we study principles for designing data augmentations for out-of-domain (OOD) generalization. In particular, we focus on real-world scenarios in which some domain-dependent features are robust, i.e., some features that vary across domains are predictive OOD. For example, in the wildlife monitoring application above, image backgrounds vary across camera locations but indicate habitat type, which helps predict the species of photographed animals. Motivated by theoretical analysis on a linear setting, we propose targeted augmentations, which selectively randomize spurious domain-dependent features while preserving robust ones. We prove that targeted augmentations improve OOD performance, allowing models to generalize better with fewer domains. In contrast, existing approaches such as generic augmentations, which fail to randomize domain-dependent features, and domain-invariant augmentations, which randomize all domain-dependent features, both perform poorly OOD. In experiments on three real-world datasets, we show that targeted augmentations set new states-of-the-art for OOD performance by 3.2-15.2%.
Author Information
Irena Gao (Stanford University)
Shiori Sagawa (Stanford University)
Pang Wei Koh (University of Washington & Google)
Tatsunori Hashimoto (Stanford)
Percy Liang (Stanford University)
More from the Same Authors
-
2022 : Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time »
Huaxiu Yao · Caroline Choi · Yoonho Lee · Pang Wei Koh · Chelsea Finn -
2022 : LinkBERT: Language Model Pretraining with Document Link Knowledge »
Michihiro Yasunaga · Jure Leskovec · Percy Liang -
2023 : Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard Security Attacks »
Daniel Kang · Xuechen Li · Ion Stoica · Carlos Guestrin · Matei Zaharia · Tatsunori Hashimoto -
2023 : DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining »
Sang Michael Xie · Hieu Pham · Xuanyi Dong · Nan Du · Hanxiao Liu · Yifeng Lu · Percy Liang · Quoc Le · Tengyu Ma · Adams Wei Yu -
2023 : Retrieval-Augmented Multimodal Language Modeling »
Michihiro Yasunaga · Armen Aghajanyan · Weijia Shi · Rich James · Jure Leskovec · Percy Liang · Mike Lewis · Luke Zettlemoyer · Wen-tau Yih -
2023 : Lexinvariant Language Models »
Qian Huang · Eric Zelikman · Sarah Chen · Yuhuai Wu · Greg Valiant · Percy Liang -
2023 : PRODIGY: Enabling In-context Learning Over Graphs »
Qian Huang · Hongyu Ren · Peng Chen · Gregor Kržmanc · Daniel Zeng · Percy Liang · Jure Leskovec -
2023 : Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training »
Hong Liu · Zhiyuan Li · David Hall · Percy Liang · Tengyu Ma -
2023 Workshop: ES-FoMo: Efficient Systems for Foundation Models »
Julien Launay · Daniel Y Fu · Tri Dao · Daniel Hesslow · Beidi Chen · Azalia Mirhoseini · Percy Liang -
2023 Poster: Data Feedback Loops: Model-driven Amplification of Dataset Biases »
Rohan Taori · Tatsunori Hashimoto -
2023 Poster: Coder Reviewer Reranking for Code Generation »
Tianyi Zhang · Tao Yu · Tatsunori Hashimoto · Mike Lewis · Scott Yih · Daniel Fried · Sida Wang -
2023 Poster: Whose Opinions Do Language Models Reflect? »
Shibani Santurkar · Esin Durmus · Faisal Ladhak · Cinoo Lee · Percy Liang · Tatsunori Hashimoto -
2023 Poster: FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU »
Ying Sheng · Lianmin Zheng · Binhang Yuan · Zhuohan Li · Max Ryabinin · Beidi Chen · Percy Liang · Christopher Re · Ion Stoica · Ce Zhang -
2023 Oral: Data Feedback Loops: Model-driven Amplification of Dataset Biases »
Rohan Taori · Tatsunori Hashimoto -
2023 Oral: FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU »
Ying Sheng · Lianmin Zheng · Binhang Yuan · Zhuohan Li · Max Ryabinin · Beidi Chen · Percy Liang · Christopher Re · Ion Stoica · Ce Zhang -
2023 Oral: Whose Opinions Do Language Models Reflect? »
Shibani Santurkar · Esin Durmus · Faisal Ladhak · Cinoo Lee · Percy Liang · Tatsunori Hashimoto -
2023 Oral: Evaluating Self-Supervised Learning via Risk Decomposition »
Yann Dubois · Tatsunori Hashimoto · Percy Liang -
2023 Poster: Evaluating Self-Supervised Learning via Risk Decomposition »
Yann Dubois · Tatsunori Hashimoto · Percy Liang -
2023 Poster: CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks »
Jue Wang · Yucheng Lu · Binhang Yuan · Beidi Chen · Percy Liang · Chris De Sa · Christopher Re · Ce Zhang -
2023 Poster: One-sided Matrix Completion from Two Observations Per Row »
Steven Cao · Percy Liang · Greg Valiant -
2023 Poster: Retrieval-Augmented Multimodal Language Modeling »
Michihiro Yasunaga · Armen Aghajanyan · Weijia Shi · Richard James · Jure Leskovec · Percy Liang · Mike Lewis · Luke Zettlemoyer · Scott Yih -
2022 : Discussion Panel »
Percy Liang · Léon Bottou · Jayashree Kalpathy-Cramer · Alex Smola -
2022 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa -
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 : Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time »
Huaxiu Yao · Caroline Choi · Yoonho Lee · Pang Wei Koh · Chelsea Finn -
2022 Poster: Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised Domain Adaptation »
Kendrick Shen · Robbie Jones · Ananya Kumar · Sang Michael Xie · Jeff Z. HaoChen · Tengyu Ma · Percy Liang -
2022 Oral: Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised Domain Adaptation »
Kendrick Shen · Robbie Jones · Ananya Kumar · Sang Michael Xie · Jeff Z. HaoChen · Tengyu Ma · Percy Liang -
2022 Poster: Identifiability Conditions for Domain Adaptation »
Ishaan Gulrajani · Tatsunori Hashimoto -
2022 Spotlight: Identifiability Conditions for Domain Adaptation »
Ishaan Gulrajani · Tatsunori Hashimoto -
2021 : Improving Robustness to Distribution Shifts: Methods and Benchmarks »
Shiori Sagawa -
2021 Poster: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Poster: Composed Fine-Tuning: Freezing Pre-Trained Denoising Autoencoders for Improved Generalization »
Sang Michael Xie · Tengyu Ma · Percy Liang -
2021 Oral: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Oral: Composed Fine-Tuning: Freezing Pre-Trained Denoising Autoencoders for Improved Generalization »
Sang Michael Xie · Tengyu Ma · Percy Liang -
2021 Poster: Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization »
John Miller · Rohan Taori · Aditi Raghunathan · Shiori Sagawa · Pang Wei Koh · Vaishaal Shankar · Percy Liang · Yair Carmon · Ludwig Schmidt -
2021 Poster: Break-It-Fix-It: Unsupervised Learning for Program Repair »
Michihiro Yasunaga · Percy Liang -
2021 Oral: Break-It-Fix-It: Unsupervised Learning for Program Repair »
Michihiro Yasunaga · Percy Liang -
2021 Spotlight: Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization »
John Miller · Rohan Taori · Aditi Raghunathan · Shiori Sagawa · Pang Wei Koh · Vaishaal Shankar · Percy Liang · Yair Carmon · Ludwig Schmidt -
2021 Poster: Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices »
Evan Liu · Aditi Raghunathan · Percy Liang · Chelsea Finn -
2021 Spotlight: Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices »
Evan Liu · Aditi Raghunathan · Percy Liang · Chelsea Finn -
2021 Poster: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Poster: Just Train Twice: Improving Group Robustness without Training Group Information »
Evan Liu · Behzad Haghgoo · Annie Chen · Aditi Raghunathan · Pang Wei Koh · Shiori Sagawa · Percy Liang · Chelsea Finn -
2021 Spotlight: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Oral: Just Train Twice: Improving Group Robustness without Training Group Information »
Evan Liu · Behzad Haghgoo · Annie Chen · Aditi Raghunathan · Pang Wei Koh · Shiori Sagawa · Percy Liang · Chelsea Finn -
2020 : Keynote #3 Percy Liang »
Percy Liang -
2020 Poster: Concept Bottleneck Models »
Pang Wei Koh · Thao Nguyen · Yew Siang Tang · Stephen Mussmann · Emma Pierson · Been Kim · Percy Liang -
2020 Poster: Graph-based, Self-Supervised Program Repair from Diagnostic Feedback »
Michihiro Yasunaga · Percy Liang -
2020 Poster: Understanding Self-Training for Gradual Domain Adaptation »
Ananya Kumar · Tengyu Ma · Percy Liang -
2020 Poster: Understanding and Mitigating the Tradeoff between Robustness and Accuracy »
Aditi Raghunathan · Sang Michael Xie · Fanny Yang · John Duchi · Percy Liang -
2020 Poster: An Investigation of Why Overparameterization Exacerbates Spurious Correlations »
Shiori Sagawa · aditi raghunathan · Pang Wei Koh · Percy Liang -
2020 Poster: Robustness to Spurious Correlations via Human Annotations »
Megha Srivastava · Tatsunori Hashimoto · Percy Liang -
2020 Poster: Feature Noise Induces Loss Discrepancy Across Groups »
Fereshte Khani · Percy Liang -
2019 Workshop: Workshop on the Security and Privacy of Machine Learning »
Nicolas Papernot · Florian Tramer · Bo Li · Dan Boneh · David Evans · Somesh Jha · Percy Liang · Patrick McDaniel · Jacob Steinhardt · Dawn Song -
2018 Poster: On the Relationship between Data Efficiency and Error for Uncertainty Sampling »
Stephen Mussmann · Percy Liang -
2018 Poster: Fairness Without Demographics in Repeated Loss Minimization »
Tatsunori Hashimoto · Megha Srivastava · Hongseok Namkoong · Percy Liang -
2018 Oral: Fairness Without Demographics in Repeated Loss Minimization »
Tatsunori Hashimoto · Megha Srivastava · Hongseok Namkoong · Percy Liang -
2018 Oral: On the Relationship between Data Efficiency and Error for Uncertainty Sampling »
Stephen Mussmann · Percy Liang -
2017 Poster: World of Bits: An Open-Domain Platform for Web-Based Agents »
Tim Shi · Andrej Karpathy · Jim Fan · Jonathan Hernandez · Percy Liang -
2017 Talk: World of Bits: An Open-Domain Platform for Web-Based Agents »
Tim Shi · Andrej Karpathy · Jim Fan · Jonathan Hernandez · Percy Liang -
2017 Poster: Developing Bug-Free Machine Learning Systems With Formal Mathematics »
Daniel Selsam · Percy Liang · David L Dill -
2017 Talk: Developing Bug-Free Machine Learning Systems With Formal Mathematics »
Daniel Selsam · Percy Liang · David L Dill -
2017 Poster: Convexified Convolutional Neural Networks »
Yuchen Zhang · Percy Liang · Martin Wainwright -
2017 Poster: Understanding Black-box Predictions via Influence Functions »
Pang Wei Koh · Percy Liang -
2017 Talk: Convexified Convolutional Neural Networks »
Yuchen Zhang · Percy Liang · Martin Wainwright -
2017 Talk: Understanding Black-box Predictions via Influence Functions »
Pang Wei Koh · Percy Liang