Timezone: »
Learning 3D graph with spatial position as well as node attributes has been recently actively studied, for its utility in different applications e.g. 3D molecules. Quantum computing is known a promising direction for its potential theoretical supremacy for large-scale graph and combinatorial problem as well as the increasing evidence for the availability to physical quantum devices in the near term. In this paper, for the first time to our best knowledge, we propose a quantum 3D embedding ansatz that learns the latent representation of 3D structures from the Hilbert space composed of the Bloch sphere of each qubit. Specifically, the 3D Cartesian coordinates of nodes are converted into rotation and torsion angles and then encode them into the form of qubits. Moreover, Parameterized Quantum Circuit (PQC) is applied to serve as the trainable layers and the output of the PQC is adopted as the final node embedding. Experimental results on two downstream tasks, molecular property prediction and 3D molecular geometries generation, demonstrate the effectiveness of our model. We show the capacity and capability of our model with the evaluation on the QM9 dataset (134k molecules) with very few parameters, and its potential to be executed on a real quantum device.
Author Information
Ge Yan (Shanghai Jiao Tong University)
Huaijin Wu (Shanghai Jiao Tong University)
Junchi Yan (Shanghai Jiao Tong University)
More from the Same Authors
-
2023 Poster: Towards Quantum Machine Learning for Constrained Combinatorial Optimization: a Quantum QAP Solver »
Xinyu Ye · Ge Yan · Junchi Yan -
2023 Poster: Patch-level Contrastive Learning via Positional Query for Visual Pre-training »
Shaofeng Zhang · Qiang Zhou · Zhibin Wang · Fan Wang · Junchi Yan -
2023 Poster: QAS-Bench: Rethinking Quantum Architecture Search and A Benchmark »
Xudong Lu · Kaisen Pan · Ge Yan · Jiaming Shan · Wenjie Wu · Junchi Yan -
2023 Poster: Understanding and Generalizing Contrastive Learning from the Inverse Optimal Transport Perspective »
Liangliang Shi · Gu Zhang · Haoyu Zhen · Jintao Fan · Junchi Yan -
2023 Poster: LinSATNet: The Positive Linear Satisfiability Neural Networks »
Runzhong Wang · Yunhao Zhang · Ziao Guo · Tianyi Chen · Xiaokang Yang · Junchi Yan -
2023 Poster: QuantumDARTS: Differentiable Quantum Architecture Search for Variational Quantum Algorithms »
Wenjie Wu · Ge Yan · Xudong Lu · Kaisen Pan · Junchi Yan -
2022 Poster: On Collective Robustness of Bagging Against Data Poisoning »
Ruoxin Chen · Zenan Li · Jie Li · Junchi Yan · Chentao Wu -
2022 Poster: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Poster: GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed Graph Neural Networks »
Yixuan He · Quan Gan · David Wipf · Gesine Reinert · Junchi Yan · Mihai Cucuringu -
2022 Spotlight: GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed Graph Neural Networks »
Yixuan He · Quan Gan · David Wipf · Gesine Reinert · Junchi Yan · Mihai Cucuringu -
2022 Spotlight: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Spotlight: On Collective Robustness of Bagging Against Data Poisoning »
Ruoxin Chen · Zenan Li · Jie Li · Junchi Yan · Chentao Wu -
2021 Poster: Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach »
Qitian Wu · Hengrui Zhang · Xiaofeng Gao · Junchi Yan · Hongyuan Zha -
2021 Poster: Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation »
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang -
2021 Spotlight: Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach »
Qitian Wu · Hengrui Zhang · Xiaofeng Gao · Junchi Yan · Hongyuan Zha -
2021 Spotlight: Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation »
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang -
2021 Poster: Deep Latent Graph Matching »
Tianshu Yu · Runzhong Wang · Junchi Yan · baoxin Li -
2021 Spotlight: Deep Latent Graph Matching »
Tianshu Yu · Runzhong Wang · Junchi Yan · baoxin Li -
2021 Poster: Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss »
Xue Yang · Junchi Yan · Qi Ming · Wentao Wang · xiaopeng zhang · Qi Tian -
2021 Spotlight: Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss »
Xue Yang · Junchi Yan · Qi Ming · Wentao Wang · xiaopeng zhang · Qi Tian