Timezone: »
Graph Neural Networks (GNNs) had been demonstrated to be inherently susceptible to the problems of over-smoothing and over-squashing. These issues prohibit the ability of GNNs to model complex graph interactions by limiting their effectiveness in taking into account distant information. Our study reveals the key connection between the local graph geometry and the occurrence of both of these issues, thereby providing a unified framework for studying them at a local scale using the Ollivier-Ricci curvature. Specifically, we demonstrate that over-smoothing is linked to positive graph curvature while over-squashing is linked to negative graph curvature. Based on our theory, we propose the Batch Ollivier-Ricci Flow, a novel rewiring algorithm capable of simultaneously addressing both over-smoothing and over-squashing.
Author Information
Khang Nguyen (FPT Software)
Nong Hieu (University of Wollongong)
Vinh NGUYEN (Fpt software, Vietnam)
Nhat Ho (University of Texas at Austin)
Stanley Osher (UCLA)
TAN NGUYEN (UCLA)
More from the Same Authors
-
2023 : Fast Approximation of the Generalized Sliced-Wasserstein Distance »
Dung Le · Huy Nguyen · Khai Nguyen · Nhat Ho -
2023 Poster: On Excess Mass Behavior in Gaussian Mixture Models with Orlicz-Wasserstein Distances »
Aritra Guha · Nhat Ho · XuanLong Nguyen -
2023 Poster: Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction »
Khai Nguyen · Dang Nguyen · Nhat Ho -
2023 Poster: Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data »
Hien Dang · Tho Tran Huu · Stanley Osher · Hung Tran-The · Nhat Ho · TAN NGUYEN -
2022 Poster: Entropic Gromov-Wasserstein between Gaussian Distributions »
Khang Le · Dung Le · Huy Nguyen · · Tung Pham · Nhat Ho -
2022 Poster: Improving Transformers with Probabilistic Attention Keys »
Tam Nguyen · Tan Nguyen · Dung Le · Duy Khuong Nguyen · Viet-Anh Tran · Richard Baraniuk · Nhat Ho · Stanley Osher -
2022 Spotlight: Improving Transformers with Probabilistic Attention Keys »
Tam Nguyen · Tan Nguyen · Dung Le · Duy Khuong Nguyen · Viet-Anh Tran · Richard Baraniuk · Nhat Ho · Stanley Osher -
2022 Spotlight: Entropic Gromov-Wasserstein between Gaussian Distributions »
Khang Le · Dung Le · Huy Nguyen · · Tung Pham · Nhat Ho -
2022 Poster: On Transportation of Mini-batches: A Hierarchical Approach »
Khai Nguyen · Dang Nguyen · Quoc Nguyen · Tung Pham · Hung Bui · Dinh Phung · Trung Le · Nhat Ho -
2022 Poster: Architecture Agnostic Federated Learning for Neural Networks »
Disha Makhija · Xing Han · Nhat Ho · Joydeep Ghosh -
2022 Poster: Improving Mini-batch Optimal Transport via Partial Transportation »
Khai Nguyen · Dang Nguyen · The-Anh Vu-Le · Tung Pham · Nhat Ho -
2022 Spotlight: Architecture Agnostic Federated Learning for Neural Networks »
Disha Makhija · Xing Han · Nhat Ho · Joydeep Ghosh -
2022 Spotlight: Improving Mini-batch Optimal Transport via Partial Transportation »
Khai Nguyen · Dang Nguyen · The-Anh Vu-Le · Tung Pham · Nhat Ho -
2022 Spotlight: On Transportation of Mini-batches: A Hierarchical Approach »
Khai Nguyen · Dang Nguyen · Quoc Nguyen · Tung Pham · Hung Bui · Dinh Phung · Trung Le · Nhat Ho -
2022 Poster: Refined Convergence Rates for Maximum Likelihood Estimation under Finite Mixture Models »
Tudor Manole · Nhat Ho -
2022 Oral: Refined Convergence Rates for Maximum Likelihood Estimation under Finite Mixture Models »
Tudor Manole · Nhat Ho -
2021 Poster: LAMDA: Label Matching Deep Domain Adaptation »
Trung Le · Tuan Nguyen · Nhat Ho · Hung Bui · Dinh Phung -
2021 Spotlight: LAMDA: Label Matching Deep Domain Adaptation »
Trung Le · Tuan Nguyen · Nhat Ho · Hung Bui · Dinh Phung