Timezone: »
Unsupervised anomaly detection (UAD) of multivariate time series (MTS) aims to learn robust representations of normal multivariate temporal patterns. Existing UAD methods try to learn a fixed set of mappings for each MTS, entailing expensive computation and limited model adaptation. To address this pivotal issue, we propose a prototype-oriented UAD (PUAD) method under a probabilistic framework. Specifically, instead of learning the mappings for each MTS, the proposed PUAD views multiple MTSs as the distribution over a group of prototypes, which are extracted to represent a diverse set of normal patterns. To learn and regulate the prototypes, PUAD introduces a reconstruction-based unsupervised anomaly detection approach, which incorporates a prototype-oriented optimal transport method into a Transformer-powered probabilistic dynamical generative framework. Leveraging meta-learned transferable prototypes, PUAD can achieve high model adaptation capacity for new MTSs. Experiments on five public MTS datasets all verify the effectiveness of the proposed UAD method.
Author Information
yuxin li (XIDIAN University)
Wenchao Chen (Xidian University)
Bo Chen (School of Electronic Engineering, Xidian University)
Bo Chen, Ph.D., Professor. Before joining the Department of Electronic Engineering in Xidian University in 2013, I was a post-doc researcher, research scientist and senior research scientist at the Department of Electrical and Computer Engineering in Duke University. In 2013 and 2014, I was elected into the Program for New Century Excellent Talents in University and the Program for Thousand Youth Talents respectively. I am interested in developing statistical machine learning methods for the complex and large-scale data. My current interests are in statistical signal processing, statistical machine learning, deep learning and their applications to radar target detection and recognition.
Dongsheng Wang (Xidian University)
Long Tian (Xi'an University of Electronic Science and Technology)
Mingyuan Zhou (University of Texas at Austin)
More from the Same Authors
-
2023 Poster: Bayesian Progressive Deep Topic Model with Knowledge Informed Textual Data Coarsening Process »
Zhibin Duan · Xinyang Liu · Yudi Su · Yishi Xu · Bo Chen · Mingyuan Zhou -
2023 Poster: Learning to Jump: Thinning and Thickening Latent Counts for Generative Modeling »
Tianqi Chen · Mingyuan Zhou -
2023 Poster: POUF: Prompt-Oriented Unsupervised Fine-tuning for Large Pre-trained Models »
Korawat Tanwisuth · Shujian Zhang · Huangjie Zheng · Pengcheng He · Mingyuan Zhou -
2022 Poster: Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection »
Wenchao Chen · Long Tian · Bo Chen · Liang Dai · Zhibin Duan · Mingyuan Zhou -
2022 Poster: Bayesian Deep Embedding Topic Meta-Learner »
Zhibin Duan · Yishi Xu · Jianqiao Sun · Bo Chen · Wenchao Chen · CHAOJIE WANG · Mingyuan Zhou -
2022 Spotlight: Bayesian Deep Embedding Topic Meta-Learner »
Zhibin Duan · Yishi Xu · Jianqiao Sun · Bo Chen · Wenchao Chen · CHAOJIE WANG · Mingyuan Zhou -
2022 Spotlight: Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection »
Wenchao Chen · Long Tian · Bo Chen · Liang Dai · Zhibin Duan · Mingyuan Zhou -
2022 Poster: Regularizing a Model-based Policy Stationary Distribution to Stabilize Offline Reinforcement Learning »
Shentao Yang · Yihao Feng · Shujian Zhang · Mingyuan Zhou -
2022 Spotlight: Regularizing a Model-based Policy Stationary Distribution to Stabilize Offline Reinforcement Learning »
Shentao Yang · Yihao Feng · Shujian Zhang · Mingyuan Zhou -
2021 Poster: Bayesian Attention Belief Networks »
Shujian Zhang · Xinjie Fan · Bo Chen · Mingyuan Zhou -
2021 Spotlight: Bayesian Attention Belief Networks »
Shujian Zhang · Xinjie Fan · Bo Chen · Mingyuan Zhou -
2021 Poster: Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network »
Zhibin Duan · Dongsheng Wang · Bo Chen · CHAOJIE WANG · Wenchao Chen · yewen li · Jie Ren · Mingyuan Zhou -
2021 Poster: ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables »
Alek Dimitriev · Mingyuan Zhou -
2021 Spotlight: ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables »
Alek Dimitriev · Mingyuan Zhou -
2021 Spotlight: Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network »
Zhibin Duan · Dongsheng Wang · Bo Chen · CHAOJIE WANG · Wenchao Chen · yewen li · Jie Ren · Mingyuan Zhou -
2020 Poster: Thompson Sampling via Local Uncertainty »
Zhendong Wang · Mingyuan Zhou -
2020 Poster: Bayesian Graph Neural Networks with Adaptive Connection Sampling »
Arman Hasanzadeh · Ehsan Hajiramezanali · Shahin Boluki · Mingyuan Zhou · Nick Duffield · Krishna Narayanan · Xiaoning Qian -
2020 Poster: Recurrent Hierarchical Topic-Guided RNN for Language Generation »
Dandan Guo · Bo Chen · Ruiying Lu · Mingyuan Zhou -
2019 Poster: ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables »
Mingzhang Yin · Yuguang Yue · Mingyuan Zhou -
2019 Oral: ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables »
Mingzhang Yin · Yuguang Yue · Mingyuan Zhou -
2019 Poster: Convolutional Poisson Gamma Belief Network »
CHAOJIE WANG · Bo Chen · SUCHENG XIAO · Mingyuan Zhou -
2019 Poster: Locally Private Bayesian Inference for Count Models »
Aaron Schein · Steven Wu · Alexandra Schofield · Mingyuan Zhou · Hanna Wallach -
2019 Oral: Convolutional Poisson Gamma Belief Network »
CHAOJIE WANG · Bo Chen · SUCHENG XIAO · Mingyuan Zhou -
2019 Oral: Locally Private Bayesian Inference for Count Models »
Aaron Schein · Steven Wu · Alexandra Schofield · Mingyuan Zhou · Hanna Wallach -
2018 Poster: Inter and Intra Topic Structure Learning with Word Embeddings »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Oral: Inter and Intra Topic Structure Learning with Word Embeddings »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Poster: Semi-Implicit Variational Inference »
Mingzhang Yin · Mingyuan Zhou -
2018 Oral: Semi-Implicit Variational Inference »
Mingzhang Yin · Mingyuan Zhou -
2017 Poster: Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC »
Yulai Cong · Bo Chen · Hongwei Liu · Mingyuan Zhou -
2017 Talk: Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC »
Yulai Cong · Bo Chen · Hongwei Liu · Mingyuan Zhou