Timezone: »
Coarse-graining (CG) accelerates molecular simulations of protein dynamics by simulating sets of atoms as singular beads. Backmapping is the opposite operation of bringing lost atomistic details back from the CG representation. While machine learning (ML) has produced accurate and efficient CG simulations of proteins, fast and reliable backmapping remains a challenge. Rule-based methods produce poor all-atom geometries, needing computationally costly refinement through additional simulations. Recently proposed ML approaches outperform traditional baselines but are not transferable between proteins and sometimes generate unphysical atom placements with steric clashes and implausible torsion angles. This work addresses both issues to build a fast, transferable, and reliable generative backmapping tool for CG protein representations. We achieve generalization and reliability through a combined set of innovations: representation based on internal coordinates; an equivariant encoder/prior; a custom loss function that helps ensure local structure, global structure, and physical constraints; and expert curation of high-quality out-of-equilibrium protein data for training. Our results pave the way for out-of-the-box backmapping of coarse-grained simulations for arbitrary proteins.
Author Information
Soojung Yang (Massachusetts Institute of Technology)
Rafael Gomez-Bombarelli (MIT)
More from the Same Authors
-
2023 : Optimizing probability of barrier crossing with differentiable simulators »
Martin Šípka · Johannes Dietschreit · Michal Pavelka · Lukáš Grajciar · Rafael Gomez-Bombarelli -
2023 Poster: Differentiable Simulations for Enhanced Sampling of Rare Events »
Martin Šípka · Johannes Dietschreit · Lukáš Grajciar · Rafael Gomez-Bombarelli -
2022 Workshop: Workshop on Machine Learning in Computational Design »
Andrew Spielberg · Caitlin Mueller · Lydia Chilton · Rafael Gomez-Bombarelli · Vladimir Kim · Daniel Ritchie · Wengong Jin -
2022 Poster: Generative Coarse-Graining of Molecular Conformations »
Wujie Wang · Minkai Xu · Chen Cai · Benjamin Kurt Miller · Tess Smidt · Yusu Wang · Jian Tang · Rafael Gomez-Bombarelli -
2022 Spotlight: Generative Coarse-Graining of Molecular Conformations »
Wujie Wang · Minkai Xu · Chen Cai · Benjamin Kurt Miller · Tess Smidt · Yusu Wang · Jian Tang · Rafael Gomez-Bombarelli -
2021 Poster: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Spotlight: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang