Timezone: »
Poster
Layered State Discovery for Incremental Autonomous Exploration
Liyu Chen · Andrea Tirinzoni · Alessandro Lazaric · Matteo Pirotta
We study the autonomous exploration (AX) problem proposed by Lim & Auer (2012). In this setting, the objective is to discover a set of $\epsilon$-optimal policies reaching a set $\mathcal{S}\_L^{\rightarrow}$ of incrementally $L$-controllable states. We introduce a novel layered decomposition of the set of incrementally $L$-controllable states that is based on the iterative application of a state-expansion operator. We leverage these results to design Layered Autonomous Exploration (LAE), a novel algorithm for AX that attains a sample complexity of $\tilde{\mathcal{O}}(LS^{\rightarrow}\_{L(1+\epsilon)}\Gamma\_{L(1+\epsilon)} A \ln^{12}(S^{\rightarrow}\_{L(1+\epsilon)})/\epsilon^2)$, where $S^{\rightarrow}\_{L(1+\epsilon)}$ is the number of states that are incrementally $L(1+\epsilon)$-controllable, $A$ is the number of actions, and $\Gamma\_{L(1+\epsilon)}$ is the branching factor of the transitions over such states. LAE improves over the algorithm of Tarbouriech et al. (2020a) by a factor of $L^2$ and it is the first algorithm for AX that works in a countably-infinite state space. Moreover, we show that, under a certain identifiability assumption, LAE achieves minimax-optimal sample complexity of $\tilde{\mathcal{O}}(LS^{\rightarrow}\_{L}A\ln^{12}(S^{\rightarrow}\_{L})/\epsilon^2)$, outperforming existing algorithms and matching for the first time the lower bound proved by Cai et al. (2022) up to logarithmic factors.
Author Information
Liyu Chen (USC)
Andrea Tirinzoni (Facebook AI Research)
Alessandro Lazaric (Facebook AI Research)
Matteo Pirotta (META)
More from the Same Authors
-
2021 : Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection »
Matteo Papini · Andrea Tirinzoni · Aldo Pacchiano · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta -
2021 : A Fully Problem-Dependent Regret Lower Bound for Finite-Horizon MDPs »
Andrea Tirinzoni · Matteo Pirotta · Alessandro Lazaric -
2021 : Online Learning for Stochastic Shortest Path Model via Posterior Sampling »
Mehdi Jafarnia · Liyu Chen · Rahul Jain · Haipeng Luo -
2021 : Bridging The Gap between Local and Joint Differential Privacy in RL »
Evrard Garcelon · Vianney Perchet · Ciara Pike-Burke · Matteo Pirotta -
2021 : Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Jean Tarbouriech · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 : A general sample complexity analysis of vanilla policy gradient »
Rui Yuan · Robert Gower · Alessandro Lazaric -
2021 : Direct then Diffuse: Incremental Unsupervised Skill Discovery for State Covering and Goal Reaching »
Pierre-Alexandre Kamienny · Jean Tarbouriech · Alessandro Lazaric · Ludovic Denoyer -
2021 : Exploration-Driven Representation Learning in Reinforcement Learning »
Akram Erraqabi · Mingde Zhao · Marlos C. Machado · Yoshua Bengio · Sainbayar Sukhbaatar · Ludovic Denoyer · Alessandro Lazaric -
2021 : Implicit Finite-Horizon Approximation for Stochastic Shortest Path »
Liyu Chen · Mehdi Jafarnia · Rahul Jain · Haipeng Luo -
2022 Workshop: Responsible Decision Making in Dynamic Environments »
Virginie Do · Thorsten Joachims · Alessandro Lazaric · Joelle Pineau · Matteo Pirotta · Harsh Satija · Nicolas Usunier -
2022 Poster: Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times »
Daniele Calandriello · Luigi Carratino · Alessandro Lazaric · Michal Valko · Lorenzo Rosasco -
2022 Poster: Improved No-Regret Algorithms for Stochastic Shortest Path with Linear MDP »
Liyu Chen · Rahul Jain · Haipeng Luo -
2022 Poster: Learning Infinite-horizon Average-reward Markov Decision Process with Constraints »
Liyu Chen · Rahul Jain · Haipeng Luo -
2022 Spotlight: Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times »
Daniele Calandriello · Luigi Carratino · Alessandro Lazaric · Michal Valko · Lorenzo Rosasco -
2022 Spotlight: Learning Infinite-horizon Average-reward Markov Decision Process with Constraints »
Liyu Chen · Rahul Jain · Haipeng Luo -
2022 Oral: Improved No-Regret Algorithms for Stochastic Shortest Path with Linear MDP »
Liyu Chen · Rahul Jain · Haipeng Luo -
2021 : Implicit Finite-Horizon Approximation for Stochastic Shortest Path »
Liyu Chen · Mehdi Jafarnia · Rahul Jain · Haipeng Luo -
2021 : Invited Talk by Alessandro Lazaric »
Alessandro Lazaric -
2021 Poster: Leveraging Good Representations in Linear Contextual Bandits »
Matteo Papini · Andrea Tirinzoni · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta -
2021 Spotlight: Leveraging Good Representations in Linear Contextual Bandits »
Matteo Papini · Andrea Tirinzoni · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta -
2021 Poster: Finding the Stochastic Shortest Path with Low Regret: the Adversarial Cost and Unknown Transition Case »
Liyu Chen · Haipeng Luo -
2021 Spotlight: Finding the Stochastic Shortest Path with Low Regret: the Adversarial Cost and Unknown Transition Case »
Liyu Chen · Haipeng Luo -
2021 Poster: Kernel-Based Reinforcement Learning: A Finite-Time Analysis »
Omar Darwiche Domingues · Pierre Menard · Matteo Pirotta · Emilie Kaufmann · Michal Valko -
2021 Spotlight: Kernel-Based Reinforcement Learning: A Finite-Time Analysis »
Omar Darwiche Domingues · Pierre Menard · Matteo Pirotta · Emilie Kaufmann · Michal Valko -
2021 Poster: Reinforcement Learning with Prototypical Representations »
Denis Yarats · Rob Fergus · Alessandro Lazaric · Lerrel Pinto -
2021 Spotlight: Reinforcement Learning with Prototypical Representations »
Denis Yarats · Rob Fergus · Alessandro Lazaric · Lerrel Pinto -
2020 Poster: No-Regret Exploration in Goal-Oriented Reinforcement Learning »
Jean Tarbouriech · Evrard Garcelon · Michal Valko · Matteo Pirotta · Alessandro Lazaric -
2020 Poster: Efficient Optimistic Exploration in Linear-Quadratic Regulators via Lagrangian Relaxation »
Marc Abeille · Alessandro Lazaric -
2020 Poster: Learning Near Optimal Policies with Low Inherent Bellman Error »
Andrea Zanette · Alessandro Lazaric · Mykel Kochenderfer · Emma Brunskill -
2020 Poster: Meta-learning with Stochastic Linear Bandits »
Leonardo Cella · Alessandro Lazaric · Massimiliano Pontil -
2020 Poster: Near-linear time Gaussian process optimization with adaptive batching and resparsification »
Daniele Calandriello · Luigi Carratino · Alessandro Lazaric · Michal Valko · Lorenzo Rosasco -
2018 Poster: Improved large-scale graph learning through ridge spectral sparsification »
Daniele Calandriello · Alessandro Lazaric · Ioannis Koutis · Michal Valko -
2018 Oral: Improved large-scale graph learning through ridge spectral sparsification »
Daniele Calandriello · Alessandro Lazaric · Ioannis Koutis · Michal Valko -
2018 Poster: Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning »
Ronan Fruit · Matteo Pirotta · Alessandro Lazaric · Ronald Ortner -
2018 Poster: Improved Regret Bounds for Thompson Sampling in Linear Quadratic Control Problems »
Marc Abeille · Alessandro Lazaric -
2018 Oral: Improved Regret Bounds for Thompson Sampling in Linear Quadratic Control Problems »
Marc Abeille · Alessandro Lazaric -
2018 Oral: Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning »
Ronan Fruit · Matteo Pirotta · Alessandro Lazaric · Ronald Ortner