Timezone: »
Guided sampling is a vital approach for applying diffusion models in real-world tasks that embeds human-defined guidance during the sampling procedure. This paper considers a general setting where the guidance is defined by an (unnormalized) energy function. The main challenge for this setting is that the intermediate guidance during the diffusion sampling procedure, which is jointly defined by the sampling distribution and the energy function, is unknown and is hard to estimate. To address this challenge, we propose an exact formulation of the intermediate guidance as well as a novel training objective named contrastive energy prediction (CEP) to learn the exact guidance. Our method is guaranteed to converge to the exact guidance under unlimited model capacity and data samples, while previous methods can not. We demonstrate the effectiveness of our method by applying it to offline reinforcement learning (RL). Extensive experiments on D4RL benchmarks demonstrate that our method outperforms existing state-of-the-art algorithms. We also provide some examples of applying CEP for image synthesis to demonstrate the scalability of CEP on high-dimensional data.
Author Information
Cheng Lu (Tsinghua University)
Huayu Chen (Tsinghua University, Tsinghua University)
Jianfei Chen (Tsinghua University)
Hang Su (Tsinghua University)
Chongxuan Li (Tsinghua University)
Jun Zhu (Tsinghua University)
More from the Same Authors
-
2021 : Towards Safe Reinforcement Learning via Constraining Conditional Value at Risk »
Chengyang Ying · Xinning Zhou · Dong Yan · Jun Zhu -
2021 : Strategically-timed State-Observation Attacks on Deep Reinforcement Learning Agents »
Xinning Zhou · You Qiaoben · Chengyang Ying · Jun Zhu -
2021 : Adversarial Semantic Contour for Object Detection »
Yichi Zhang · Zijian Zhu · Xiao Yang · Jun Zhu -
2021 : Query-based Adversarial Attacks on Graph with Fake Nodes »
Zhengyi Wang · Zhongkai Hao · Jun Zhu -
2023 : MissDiff: Training Diffusion Models on Tabular Data with Missing Values »
Yidong Ouyang · Liyan Xie · Chongxuan Li · Guang Cheng -
2023 Poster: MultiAdam: Parameter-wise Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural Networks »
Jiachen Yao · Chang Su · Zhongkai Hao · LIU SONGMING · Hang Su · Jun Zhu -
2023 Poster: Towards Understanding Generalization of Macro-AUC in Multi-label Learning »
Guoqiang Wu · Chongxuan Li · Yilong Yin -
2023 Poster: Stabilizing GANs' Training with Brownian Motion Controller »
Tianjiao Luo · Ziyu Zhu · Jianfei Chen · Jun Zhu -
2023 Poster: Revisiting Discriminative vs. Generative Classifiers: Theory and Implications »
Chenyu Zheng · Guoqiang Wu · Fan Bao · Yue Cao · Chongxuan Li · Jun Zhu -
2023 Poster: NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data »
LIU SONGMING · Zhongkai Hao · Chengyang Ying · Hang Su · Ze Cheng · Jun Zhu -
2023 Poster: Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs »
Kaiwen Zheng · Cheng Lu · Jianfei Chen · Jun Zhu -
2023 Poster: One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale »
Fan Bao · Shen Nie · Kaiwen Xue · Chongxuan Li · Shi Pu · Yaole Wang · Gang Yue · Yue Cao · Hang Su · Jun Zhu -
2023 Poster: GNOT: A General Neural Operator Transformer for Operator Learning »
Zhongkai Hao · Zhengyi Wang · Hang Su · Chengyang Ying · Yinpeng Dong · LIU SONGMING · Ze Cheng · Jian Song · Jun Zhu -
2022 Poster: NeuralEF: Deconstructing Kernels by Deep Neural Networks »
Zhijie Deng · Jiaxin Shi · Jun Zhu -
2022 Spotlight: NeuralEF: Deconstructing Kernels by Deep Neural Networks »
Zhijie Deng · Jiaxin Shi · Jun Zhu -
2022 Poster: Robustness and Accuracy Could Be Reconcilable by (Proper) Definition »
Tianyu Pang · Min Lin · Xiao Yang · Jun Zhu · Shuicheng Yan -
2022 Poster: Maximum Likelihood Training for Score-based Diffusion ODEs by High Order Denoising Score Matching »
Cheng Lu · Kaiwen Zheng · Fan Bao · Jianfei Chen · Chongxuan Li · Jun Zhu -
2022 Poster: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang -
2022 Spotlight: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang -
2022 Spotlight: Maximum Likelihood Training for Score-based Diffusion ODEs by High Order Denoising Score Matching »
Cheng Lu · Kaiwen Zheng · Fan Bao · Jianfei Chen · Chongxuan Li · Jun Zhu -
2022 Spotlight: Robustness and Accuracy Could Be Reconcilable by (Proper) Definition »
Tianyu Pang · Min Lin · Xiao Yang · Jun Zhu · Shuicheng Yan -
2022 Poster: Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models »
Fan Bao · Chongxuan Li · Jiacheng Sun · Jun Zhu · Bo Zhang -
2022 Poster: GSmooth: Certified Robustness against Semantic Transformations via Generalized Randomized Smoothing »
Zhongkai Hao · Chengyang Ying · Yinpeng Dong · Hang Su · Jian Song · Jun Zhu -
2022 Poster: Thompson Sampling for (Combinatorial) Pure Exploration »
Siwei Wang · Jun Zhu -
2022 Spotlight: GSmooth: Certified Robustness against Semantic Transformations via Generalized Randomized Smoothing »
Zhongkai Hao · Chengyang Ying · Yinpeng Dong · Hang Su · Jian Song · Jun Zhu -
2022 Spotlight: Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models »
Fan Bao · Chongxuan Li · Jiacheng Sun · Jun Zhu · Bo Zhang -
2022 Spotlight: Thompson Sampling for (Combinatorial) Pure Exploration »
Siwei Wang · Jun Zhu -
2021 : Discussion Panel #1 »
Hang Su · Matthias Hein · Liwei Wang · Sven Gowal · Jan Hendrik Metzen · Henry Liu · Yisen Wang -
2021 Workshop: A Blessing in Disguise: The Prospects and Perils of Adversarial Machine Learning »
Hang Su · Yinpeng Dong · Tianyu Pang · Eric Wong · Zico Kolter · Shuo Feng · Bo Li · Henry Liu · Dan Hendrycks · Francesco Croce · Leslie Rice · Tian Tian -
2021 : Opening Remarks »
Hang Su -
2021 Workshop: ICML Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI »
Quanshi Zhang · Tian Han · Lixin Fan · Zhanxing Zhu · Hang Su · Ying Nian Wu -
2021 Poster: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2021 Spotlight: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2020 Poster: Understanding and Stabilizing GANs' Training Dynamics Using Control Theory »
Kun Xu · Chongxuan Li · Jun Zhu · Bo Zhang -
2020 Poster: Variance Reduction and Quasi-Newton for Particle-Based Variational Inference »
Michael Zhu · Chang Liu · Jun Zhu -
2020 Poster: VFlow: More Expressive Generative Flows with Variational Data Augmentation »
Jianfei Chen · Cheng Lu · Biqi Chenli · Jun Zhu · Tian Tian -
2020 Poster: Nonparametric Score Estimators »
Yuhao Zhou · Jiaxin Shi · Jun Zhu -
2019 Poster: Improving Adversarial Robustness via Promoting Ensemble Diversity »
Tianyu Pang · Kun Xu · Chao Du · Ning Chen · Jun Zhu -
2019 Oral: Improving Adversarial Robustness via Promoting Ensemble Diversity »
Tianyu Pang · Kun Xu · Chao Du · Ning Chen · Jun Zhu -
2018 Poster: Message Passing Stein Variational Gradient Descent »
Jingwei Zhuo · Chang Liu · Jiaxin Shi · Jun Zhu · Ning Chen · Bo Zhang -
2018 Poster: Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors »
Yichi Zhou · Jun Zhu · Jingwei Zhuo -
2018 Oral: Message Passing Stein Variational Gradient Descent »
Jingwei Zhuo · Chang Liu · Jiaxin Shi · Jun Zhu · Ning Chen · Bo Zhang -
2018 Oral: Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors »
Yichi Zhou · Jun Zhu · Jingwei Zhuo -
2018 Poster: Max-Mahalanobis Linear Discriminant Analysis Networks »
Tianyu Pang · Chao Du · Jun Zhu -
2018 Poster: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Oral: Max-Mahalanobis Linear Discriminant Analysis Networks »
Tianyu Pang · Chao Du · Jun Zhu -
2018 Oral: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Poster: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Poster: A Spectral Approach to Gradient Estimation for Implicit Distributions »
Jiaxin Shi · Shengyang Sun · Jun Zhu -
2018 Oral: A Spectral Approach to Gradient Estimation for Implicit Distributions »
Jiaxin Shi · Shengyang Sun · Jun Zhu -
2018 Oral: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2017 Poster: Identify the Nash Equilibrium in Static Games with Random Payoffs »
Yichi Zhou · Jialian Li · Jun Zhu -
2017 Talk: Identify the Nash Equilibrium in Static Games with Random Payoffs »
Yichi Zhou · Jialian Li · Jun Zhu