Timezone: »
We present MAV3D (Make-A-Video3D), a method for generating three-dimensional dynamic scenes from text descriptions. Our approach uses a 4D dynamic Neural Radiance Field (NeRF), which is optimized for scene appearance, density, and motion consistency by querying a Text-to-Video (T2V) diffusion-based model. The dynamic video output generated from the provided text can be viewed from any camera location and angle, and can be composited into any 3D environment. MAV3D does not require any 3D or 4D data and the T2V model is trained only on Text-Image pairs and unlabeled videos. We demonstrate the effectiveness of our approach using comprehensive quantitative and qualitative experiments and show an improvement over previously established internal baselines. To the best of our knowledge, our method is the first to generate 3D dynamic scenes given a text description. Generated samples can be viewed at make-a-video3d.github.io
Author Information
Uriel Singer (Meta AI)
Shelly Sheynin (Meta)
Adam Polyak (Meta)
Oron Ashual (Meta)
Iurii Makarov (Facebook)
Filippos Kokkinos (Meta AI)
Naman Goyal (Facebook)
Andrea Vedaldi (University of Oxford)
Devi Parikh (Georgia Tech & Facebook AI Research)
Justin Johnson (University of Michigan)
Yaniv Taigman (Meta)
More from the Same Authors
-
2022 : The Semantic Shift Benchmark »
Sagar Vaze · Kai Han · Andrea Vedaldi · Andrew Zisserman -
2023 Poster: Scaling Laws for Generative Mixed-Modal Language Models »
Armen Aghajanyan · LILI YU · Alexis Conneau · Wei-Ning Hsu · Karen Hambardzumyan · Susan Zhang · Stephen Roller · Naman Goyal · Omer Levy · Luke Zettlemoyer -
2023 Poster: Hyperbolic Image-text Representations »
Karan Desai · Maximilian Nickel · Tanmay Rajpurohit · Justin Johnson · Ramakrishna Vedantam -
2022 : The Semantic Shift Benchmark »
Sagar Vaze · Kai Han · Andrea Vedaldi · Andrew Zisserman -
2019 : Forcing Vision + Language Models To Actually See, Not Just Talk »
Devi Parikh -
2019 Poster: Probabilistic Neural Symbolic Models for Interpretable Visual Question Answering »
Shanmukha Ramakrishna Vedantam · Karan Desai · Stefan Lee · Marcus Rohrbach · Dhruv Batra · Devi Parikh -
2019 Poster: TarMAC: Targeted Multi-Agent Communication »
Abhishek Das · Theophile Gervet · Joshua Romoff · Dhruv Batra · Devi Parikh · Michael Rabbat · Joelle Pineau -
2019 Oral: TarMAC: Targeted Multi-Agent Communication »
Abhishek Das · Theophile Gervet · Joshua Romoff · Dhruv Batra · Devi Parikh · Michael Rabbat · Joelle Pineau -
2019 Oral: Probabilistic Neural Symbolic Models for Interpretable Visual Question Answering »
Shanmukha Ramakrishna Vedantam · Karan Desai · Stefan Lee · Marcus Rohrbach · Dhruv Batra · Devi Parikh -
2019 Poster: Counterfactual Visual Explanations »
Yash Goyal · Ziyan Wu · Jan Ernst · Dhruv Batra · Devi Parikh · Stefan Lee -
2019 Oral: Counterfactual Visual Explanations »
Yash Goyal · Ziyan Wu · Jan Ernst · Dhruv Batra · Devi Parikh · Stefan Lee -
2018 Poster: Fitting New Speakers Based on a Short Untranscribed Sample »
Eliya Nachmani · Adam Polyak · Yaniv Taigman · Lior Wolf -
2018 Oral: Fitting New Speakers Based on a Short Untranscribed Sample »
Eliya Nachmani · Adam Polyak · Yaniv Taigman · Lior Wolf -
2017 Poster: Warped Convolutions: Efficient Invariance to Spatial Transformations »
Joao Henriques · Andrea Vedaldi -
2017 Talk: Warped Convolutions: Efficient Invariance to Spatial Transformations »
Joao Henriques · Andrea Vedaldi