Timezone: »
Controlling artificial agents from visual sensory data is an arduous task. Reinforcement learning (RL) algorithms can succeed but require large amounts of interactions between the agent and the environment. To alleviate the issue, unsupervised RL proposes to employ self-supervised interaction and learning, for adapting faster to future tasks. Yet, as shown in the Unsupervised RL Benchmark (URLB; Laskin et al. 2021), whether current unsupervised strategies can improve generalization capabilities is still unclear, especially in visual control settings. In this work, we study the URLB and propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent, and a task-aware fine-tuning strategy combined with a new proposed hybrid planner, Dyna-MPC, to adapt the agent for downstream tasks. On URLB, our method obtains 93.59% overall normalized performance, surpassing previous baselines by a staggering margin. The approach is empirically evaluated through a large-scale empirical study, which we use to validate our design choices and analyze our models. We also show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation. Project website: https://masteringurlb.github.io/
Author Information
Sai Rajeswar (University of Montreal)
Pietro Mazzaglia (Ghent University)
Tim Verbelen (VERSES)
Alex Piche (Mila)
Bart Dhoedt (Ghent University)
Aaron Courville (University of Montreal)
Alexandre Lacoste (ServiceNow Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Oral: Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels »
Wed. Jul 26th 04:18 -- 04:26 AM Room Ballroom C
More from the Same Authors
-
2021 : Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Sékou-Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2022 : Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels »
Sai Rajeswar · Pietro Mazzaglia · Tim Verbelen · Alex Piche · Bart Dhoedt · Aaron Courville · Alexandre Lacoste -
2023 : Do as your neighbors: Invariant learning through non-parametric neighbourhood matching »
Andrei Nicolicioiu · Jerry Huang · Dhanya Sridhar · Aaron Courville -
2023 : Learning with Learning Awareness using Meta-Values »
Tim Cooijmans · Milad Aghajohari · Aaron Courville -
2023 : Causal Discovery with Language Models as Imperfect Experts »
Stephanie Long · Alex Piche · Valentina Zantedeschi · Tibor Schuster · Alexandre Drouin -
2023 : Inferring Hierarchical Structure in Multi-Room Maze Environments »
Daria de Tinguy · Toon Van de Maele · Tim Verbelen · Bart Dhoedt -
2023 Poster: Bigger, Better, Faster: Human-level Atari with human-level efficiency »
Max Schwarzer · Johan Obando Ceron · Aaron Courville · Marc Bellemare · Rishabh Agarwal · Pablo Samuel Castro -
2019 Poster: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Oral: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2018 Poster: Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data »
Amjad Almahairi · Sai Rajeswar · Alessandro Sordoni · Philip Bachman · Aaron Courville -
2018 Poster: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Oral: Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data »
Amjad Almahairi · Sai Rajeswar · Alessandro Sordoni · Philip Bachman · Aaron Courville -
2018 Oral: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2017 Poster: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien