Timezone: »
Causal discovery with latent confounders is an important but challenging task in many scientific areas. Despite the success of some overcomplete independent component analysis (OICA) based methods in certain domains, they are computationally expensive and can easily get stuck into local optima. We notice that interestingly, by making use of higher-order cumulants, there exists a closed-form solution to OICA in specific cases, e.g., when the mixing procedure follows the One-Latent-Component structure. In light of the power of the closed-form solution to OICA corresponding to the One-Latent-Component structure, we formulate a way to estimate the mixing matrix using the higher-order cumulants, and further propose the testable One-Latent-Component condition to identify the latent variables and determine causal orders. By iteratively removing the share identified latent components, we successfully extend the results on the One-Latent-Component structure to the Multi-Latent-Component structure and finally provide a practical and asymptotically correct algorithm to learn the causal structure with latent variables. Experimental results illustrate the asymptotic correctness and effectiveness of the proposed method.
Author Information
Ruichu Cai
Zhiyi Huang (Guangdong University of Technology)
Wei Chen (Guangdong University of Technology)
Zhifeng Hao (Foshan University)
Kun Zhang (Carnegie Mellon University)
More from the Same Authors
-
2021 : Optimal transport for causal discovery »
Ruibo Tu · Kun Zhang · Hedvig Kjellström · Cheng Zhang -
2022 : Causal Balancing for Domain Generalization »
Xinyi Wang · Michael Saxon · Jiachen Li · Hongyang Zhang · Kun Zhang · William Wang -
2023 : Counterfactual Generation with Identifiability Guarantees »
Hanqi Yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 : Identification of Nonlinear Latent Hierarchical Causal Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 : Advancing Counterfactual Inference through Quantile Regression »
Shaoan Xie · Biwei Huang · Bin Gu · Tongliang Liu · Kun Zhang -
2023 : Natural Counterfactuals With Necessary Backtracking »
Guangyuan Hao · Jiji Zhang · Hao Wang · Kun Zhang -
2023 : Natural Counterfactuals With Necessary Backtracking »
Guangyuan Hao · Jiji Zhang · Hao Wang · Kun Zhang -
2023 Poster: Identifiability of Label Noise Transition Matrix »
Yang Liu · Hao Cheng · Kun Zhang -
2023 Poster: Feature Expansion for Graph Neural Networks »
Jiaqi Sun · Lin Zhang · Guangyi Chen · Peng XU · Kun Zhang · Yujiu Yang -
2023 Poster: Model Transferability with Responsive Decision Subjects »
Yatong Chen · Zeyu Tang · Kun Zhang · Yang Liu -
2023 Poster: Evolving Semantic Prototype Improves Generative Zero-Shot Learning »
Shiming Chen · Wenjin Hou · Ziming Hong · Xiaohan Ding · Yibing Song · Xinge You · Tongliang Liu · Kun Zhang -
2023 Poster: Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise? »
Yu Yao · Mingming Gong · Yuxuan Du · Jun Yu · Bo Han · Kun Zhang · Tongliang Liu -
2022 : Model Transferability With Responsive Decision Subjects »
Yang Liu · Yatong Chen · Zeyu Tang · Kun Zhang -
2022 Poster: Identification of Linear Non-Gaussian Latent Hierarchical Structure »
Feng Xie · Biwei Huang · Zhengming Chen · Yangbo He · zhi geng · Kun Zhang -
2022 Poster: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Identification of Linear Non-Gaussian Latent Hierarchical Structure »
Feng Xie · Biwei Huang · Zhengming Chen · Yangbo He · zhi geng · Kun Zhang -
2022 Poster: Partial disentanglement for domain adaptation »
Lingjing Kong · Shaoan Xie · Weiran Yao · Yujia Zheng · Guangyi Chen · Petar Stojanov · Victor Akinwande · Kun Zhang -
2022 Spotlight: Partial disentanglement for domain adaptation »
Lingjing Kong · Shaoan Xie · Weiran Yao · Yujia Zheng · Guangyi Chen · Petar Stojanov · Victor Akinwande · Kun Zhang -
2020 Poster: Label-Noise Robust Domain Adaptation »
Xiyu Yu · Tongliang Liu · Mingming Gong · Kun Zhang · Kayhan Batmanghelich · Dacheng Tao -
2020 Poster: LTF: A Label Transformation Framework for Correcting Label Shift »
Jiaxian Guo · Mingming Gong · Tongliang Liu · Kun Zhang · Dacheng Tao -
2020 Poster: Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs »
AmirEmad Ghassami · Alan Yang · Negar Kiyavash · Kun Zhang -
2019 Poster: Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models »
Biwei Huang · Kun Zhang · Mingming Gong · Clark Glymour -
2019 Oral: Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models »
Biwei Huang · Kun Zhang · Mingming Gong · Clark Glymour -
2019 Poster: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon -
2019 Oral: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon