Timezone: »
AI assistance continues to help advance applications in education, from language learning to intelligent tutoring systems, yet current methods for providing students feedback are still quite limited. Most automatic feedback systems either provide binary correctness feedback, which may not help a student understand how to improve, or require hand-coding feedback templates, which may not generalize to new domains. This can be particularly challenging for physical control tasks, where the rich diversity in student behavior and specialized domains make it challenging to leverage general-purpose assistive tools for providing feedback. We design and build CORGI, a model trained to generate language corrections for physical control tasks, such as learning to ride a bike. CORGI takes in as input a pair of student and expert trajectories, and then generates natural language corrections to help the student improve. We collect and train CORGI over data from three diverse physical control tasks (drawing, steering, and joint movement). Through both automatic and human evaluations, we show that CORGI can (i) generate valid feedback for novel student trajectories, (ii) outperform baselines on domains with novel control dynamics, and (iii) improve student learning in an interactive drawing task.
Author Information
Megha Srivastava (Stanford University)
Noah Goodman (Stanford University)
Dorsa Sadigh (Stanford University)
More from the Same Authors
-
2023 : Parallel Sampling of Diffusion Models »
Andy Shih · Suneel Belkhale · Stefano Ermon · Dorsa Sadigh · Nima Anari -
2023 : Do Users Write More Insecure Code with AI Assistants? »
Megha Srivastava -
2023 : Parallel Sampling of Diffusion Models »
Andy Shih · Suneel Belkhale · Stefano Ermon · Dorsa Sadigh · Nima Anari -
2023 : Do Users Write More Insecure Code with AI Assistants? »
Neil Perry · Megha Srivastava · Deepak Kumar · Dan Boneh -
2023 : Inverse Preference Learning: Preference-based RL without a Reward Function »
Joey Hejna · Dorsa Sadigh -
2023 : Aligning Robots with Human Preferences »
Dorsa Sadigh -
2023 Poster: Distance Weighted Supervised Learning for Offline Interaction Data »
Joey Hejna · Jensen Gao · Dorsa Sadigh -
2023 Poster: Long Horizon Temperature Scaling »
Andy Shih · Dorsa Sadigh · Stefano Ermon -
2023 Poster: Language Instructed Reinforcement Learning for Human-AI Coordination »
Hengyuan Hu · Dorsa Sadigh -
2022 Poster: Imitation Learning by Estimating Expertise of Demonstrators »
Mark Beliaev · Andy Shih · Stefano Ermon · Dorsa Sadigh · Ramtin Pedarsani -
2022 Spotlight: Imitation Learning by Estimating Expertise of Demonstrators »
Mark Beliaev · Andy Shih · Stefano Ermon · Dorsa Sadigh · Ramtin Pedarsani -
2022 Poster: Inducing Causal Structure for Interpretable Neural Networks »
Atticus Geiger · Zhengxuan Wu · Hanson Lu · Joshua Rozner · Elisa Kreiss · Thomas Icard · Noah Goodman · Christopher Potts -
2022 Spotlight: Inducing Causal Structure for Interpretable Neural Networks »
Atticus Geiger · Zhengxuan Wu · Hanson Lu · Joshua Rozner · Elisa Kreiss · Thomas Icard · Noah Goodman · Christopher Potts -
2022 : Learning to interact: LET’S LEARN IT ALL Implicit coordination though learned representations »
Dorsa Sadigh -
2022 : Learning to interact: GAME! Coordinating actions with humans via game theory »
Dorsa Sadigh -
2022 : Q&A »
Dorsa Sadigh · Anca Dragan -
2022 : Learning objectives and preferences: HOW? Actively »
Dorsa Sadigh -
2022 Tutorial: Learning for Interactive Agents »
Dorsa Sadigh · Anca Dragan -
2021 : The Role of Conventions in Adaptive Human-AI Collaboration »
Dorsa Sadigh -
2021 Poster: Targeted Data Acquisition for Evolving Negotiation Agents »
Minae Kwon · Siddharth Karamcheti · Mariano-Florentino Cuellar · Dorsa Sadigh -
2021 Spotlight: Targeted Data Acquisition for Evolving Negotiation Agents »
Minae Kwon · Siddharth Karamcheti · Mariano-Florentino Cuellar · Dorsa Sadigh -
2020 : "Active Learning of Robot Reward Functions" »
Dorsa Sadigh -
2020 Poster: Robustness to Spurious Correlations via Human Annotations »
Megha Srivastava · Tatsunori Hashimoto · Percy Liang -
2019 : Dorsa Sadigh: "Influencing Interactive Mixed-Autonomy Systems" »
Dorsa Sadigh -
2018 Poster: Fairness Without Demographics in Repeated Loss Minimization »
Tatsunori Hashimoto · Megha Srivastava · Hongseok Namkoong · Percy Liang -
2018 Oral: Fairness Without Demographics in Repeated Loss Minimization »
Tatsunori Hashimoto · Megha Srivastava · Hongseok Namkoong · Percy Liang