Timezone: »
Screening classifiers are increasingly used to identify qualified candidates in a variety of selection processes. In this context, it has been recently shown that if a classifier is calibrated, one can identify the smallest set of candidates which contains, in expectation, a desired number of qualified candidates using a threshold decision rule. This lends support to focusing on calibration as the only requirement for screening classifiers. In this paper, we argue that screening policies that use calibrated classifiers may suffer from an understudied type of within-group unfairness---they may unfairly treat qualified members within demographic groups of interest. Further, we argue that this type of unfairness can be avoided if classifiers satisfy within-group monotonicity, a natural monotonicity property within each group. Then, we introduce an efficient post-processing algorithm based on dynamic programming to minimally modify a given calibrated classifier so that its probability estimates satisfy within-group monotonicity. We validate our algorithm using US Census survey data and show that within-group monotonicity can often be achieved at a small cost in terms of prediction granularity and shortlist size.
Author Information
Nastaran Okati (Max Planck Institute for Software Systems)
Stratis Tsirtsis (Max Planck Institute for Software Systems)
Stratis Tsirtsis is a Ph.D. candidate at the Max Planck Institute for Software Systems. He is interested in building machine learning systems to inform decisions about individuals who present strategic behavior.
Manuel Gomez-Rodriguez (MPI-SWS)

Manuel Gomez Rodriguez is a faculty at Max Planck Institute for Software Systems. Manuel develops human-centric machine learning models and algorithms for the analysis, modeling and control of social, information and networked systems. He has received several recognitions for his research, including an outstanding paper award at NeurIPS’13 and a best research paper honorable mention at KDD’10 and WWW’17. He has served as track chair for FAT* 2020 and as area chair for every major conference in machine learning, data mining and the Web. Manuel has co-authored over 50 publications in top-tier conferences (NeurIPS, ICML, WWW, KDD, WSDM, AAAI) and journals (PNAS, Nature Communications, JMLR, PLOS Computational Biology). Manuel holds a BS in Electrical Engineering from Carlos III University, a MS and PhD in Electrical Engineering from Stanford University, and has received postdoctoral training at the Max Planck Institute for Intelligent Systems.
More from the Same Authors
-
2021 : Learning to Switch Among Agents in a Team »
Manuel Gomez-Rodriguez · Vahid Balazadeh Meresht -
2021 : Counterfactual Explanations in Sequential Decision Making Under Uncertainty »
Stratis Tsirtsis · Abir De · Manuel Gomez-Rodriguez -
2021 : Differentiable Learning Under Triage »
Nastaran Okati · Abir De · Manuel Gomez-Rodriguez -
2023 : Finding Counterfactually Optimal Action Sequences in Continuous State Spaces »
Stratis Tsirtsis · Manuel Gomez-Rodriguez -
2023 : Designing Decision Support Systems Using Counterfactual Prediction Sets »
Eleni Straitouri · Manuel Gomez-Rodriguez -
2023 : Human-Aligned Calibration for AI-Assisted Decision Making »
Nina Corvelo Benz · Manuel Gomez-Rodriguez -
2023 Workshop: “Could it have been different?” Counterfactuals in Minds and Machines »
Nina Corvelo Benz · Ricardo Dominguez-Olmedo · Manuel Gomez-Rodriguez · Thorsten Joachims · Amir-Hossein Karimi · Stratis Tsirtsis · Isabel Valera · Sarah A Wu -
2023 Poster: Improving Expert Predictions with Conformal Prediction »
Eleni Straitouri · Luke Lequn Wang · Nastaran Okati · Manuel Gomez-Rodriguez -
2022 Poster: Improving Screening Processes via Calibrated Subset Selection »
Luke Lequn Wang · Thorsten Joachims · Manuel Gomez-Rodriguez -
2022 Spotlight: Improving Screening Processes via Calibrated Subset Selection »
Luke Lequn Wang · Thorsten Joachims · Manuel Gomez-Rodriguez -
2021 : Poster »
Shiji Zhou · Nastaran Okati · Wichinpong Sinchaisri · Kim de Bie · Ana Lucic · Mina Khan · Ishaan Shah · JINGHUI LU · Andreas Kirsch · Julius Frost · Ze Gong · Gokul Swamy · Ah Young Kim · Ahmed Baruwa · Ranganath Krishnan -
2021 : Differentiable learning Under Algorithmic Triage »
Manuel Gomez-Rodriguez -
2021 Workshop: ICML Workshop on Algorithmic Recourse »
Stratis Tsirtsis · Amir-Hossein Karimi · Ana Lucic · Manuel Gomez-Rodriguez · Isabel Valera · Hima Lakkaraju -
2018 Tutorial: Learning with Temporal Point Processes »
Manuel Gomez-Rodriguez · Isabel Valera