Timezone: »

On the Within-Group Fairness of Screening Classifiers
Nastaran Okati · Stratis Tsirtsis · Manuel Gomez-Rodriguez

Wed Jul 26 02:00 PM -- 03:30 PM (PDT) @ Exhibit Hall 1 #518

Screening classifiers are increasingly used to identify qualified candidates in a variety of selection processes. In this context, it has been recently shown that if a classifier is calibrated, one can identify the smallest set of candidates which contains, in expectation, a desired number of qualified candidates using a threshold decision rule. This lends support to focusing on calibration as the only requirement for screening classifiers. In this paper, we argue that screening policies that use calibrated classifiers may suffer from an understudied type of within-group unfairness---they may unfairly treat qualified members within demographic groups of interest. Further, we argue that this type of unfairness can be avoided if classifiers satisfy within-group monotonicity, a natural monotonicity property within each group. Then, we introduce an efficient post-processing algorithm based on dynamic programming to minimally modify a given calibrated classifier so that its probability estimates satisfy within-group monotonicity. We validate our algorithm using US Census survey data and show that within-group monotonicity can often be achieved at a small cost in terms of prediction granularity and shortlist size.

Author Information

Nastaran Okati (Max Planck Institute for Software Systems)
Stratis Tsirtsis (Max Planck Institute for Software Systems)

Stratis Tsirtsis is a Ph.D. candidate at the Max Planck Institute for Software Systems. He is interested in building machine learning systems to inform decisions about individuals who present strategic behavior.

Manuel Gomez-Rodriguez (MPI-SWS)
Manuel Gomez-Rodriguez

Manuel Gomez Rodriguez is a faculty at Max Planck Institute for Software Systems. Manuel develops human-centric machine learning models and algorithms for the analysis, modeling and control of social, information and networked systems. He has received several recognitions for his research, including an outstanding paper award at NeurIPS’13 and a best research paper honorable mention at KDD’10 and WWW’17. He has served as track chair for FAT* 2020 and as area chair for every major conference in machine learning, data mining and the Web. Manuel has co-authored over 50 publications in top-tier conferences (NeurIPS, ICML, WWW, KDD, WSDM, AAAI) and journals (PNAS, Nature Communications, JMLR, PLOS Computational Biology). Manuel holds a BS in Electrical Engineering from Carlos III University, a MS and PhD in Electrical Engineering from Stanford University, and has received postdoctoral training at the Max Planck Institute for Intelligent Systems.

More from the Same Authors