Timezone: »
Poster
Optimally-weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti · Masha Naslidnyk · Oscar Key · Samuel Kaski · Francois-Xavier Briol
Likelihood-free inference methods typically make use of a distance between simulated and real data. A common example is the maximum mean discrepancy (MMD), which has previously been used for approximate Bayesian computation, minimum distance estimation, generalised Bayesian inference, and within the nonparametric learning framework. The MMD is commonly estimated at a root-$m$ rate, where $m$ is the number of simulated samples. This can lead to significant computational challenges since a large $m$ is required to obtain an accurate estimate, which is crucial for parameter estimation. In this paper, we propose a novel estimator for the MMD with significantly improved sample complexity. The estimator is particularly well suited for computationally expensive smooth simulators with low- to mid-dimensional inputs. This claim is supported through both theoretical results and an extensive simulation study on benchmark simulators.
Author Information
Ayush Bharti (Aalto University)
Masha Naslidnyk (University College London, University of London)
Oscar Key (UCL)
Samuel Kaski (Aalto University and University of Manchester)
Francois-Xavier Briol (University of Cambridge)
More from the Same Authors
-
2023 : Robust and Scalable Bayesian Online Changepoint Detection »
Matias Altamirano · Francois-Xavier Briol · Jeremias Knoblauch -
2023 : Augmenting Bayesian Optimization with Preference-based Expert Feedback »
Daolang Huang · Louis Filstroff · Petrus Mikkola · Runkai Zheng · Milica Todorovic · Samuel Kaski -
2023 : Bayesian Active Meta-Learning under Prior Misspecification »
Sabina Sloman · Ayush Bharti · Samuel Kaski -
2023 Poster: Vector-Valued Control Variates »
Zhuo Sun · Alessandro Barp · Francois-Xavier Briol -
2023 Poster: Robust and Scalable Bayesian Online Changepoint Detection »
Matias Altamirano · Francois-Xavier Briol · Jeremias Knoblauch -
2022 Poster: Approximate Bayesian Computation with Domain Expert in the Loop »
Ayush Bharti · Louis Filstroff · Samuel Kaski -
2022 Spotlight: Approximate Bayesian Computation with Domain Expert in the Loop »
Ayush Bharti · Louis Filstroff · Samuel Kaski -
2022 Poster: Tackling covariate shift with node-based Bayesian neural networks »
Trung Trinh · Markus Heinonen · Luigi Acerbi · Samuel Kaski -
2022 Oral: Tackling covariate shift with node-based Bayesian neural networks »
Trung Trinh · Markus Heinonen · Luigi Acerbi · Samuel Kaski -
2021 Poster: Differentially Private Bayesian Inference for Generalized Linear Models »
Tejas Kulkarni · Joonas Jälkö · Antti Koskela · Samuel Kaski · Antti Honkela -
2021 Spotlight: Differentially Private Bayesian Inference for Generalized Linear Models »
Tejas Kulkarni · Joonas Jälkö · Antti Koskela · Samuel Kaski · Antti Honkela -
2021 Poster: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Spotlight: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2020 Poster: Projective Preferential Bayesian Optimization »
Petrus Mikkola · Milica Todorović · Jari Järvi · Patrick Rinke · Samuel Kaski -
2019 : Overview of the day »
Francois-Xavier Briol -
2019 : Networking Lunch (provided) + Poster Session »
Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki -
2019 Poster: Stein Point Markov Chain Monte Carlo »
Wilson Ye Chen · Alessandro Barp · Francois-Xavier Briol · Jackson Gorham · Mark Girolami · Lester Mackey · Chris Oates -
2019 Poster: Active Learning for Decision-Making from Imbalanced Observational Data »
Iiris Sundin · Peter Schulam · Eero Siivola · Aki Vehtari · Suchi Saria · Samuel Kaski -
2019 Oral: Active Learning for Decision-Making from Imbalanced Observational Data »
Iiris Sundin · Peter Schulam · Eero Siivola · Aki Vehtari · Suchi Saria · Samuel Kaski -
2019 Oral: Stein Point Markov Chain Monte Carlo »
Wilson Ye Chen · Alessandro Barp · Francois-Xavier Briol · Jackson Gorham · Mark Girolami · Lester Mackey · Chris Oates -
2017 Workshop: Private and Secure Machine Learning »
Antti Honkela · Kana Shimizu · Samuel Kaski