Timezone: »
Finding the optimal pass sequence of compilation can lead to a significant reduction in program size. Prior works on compilation pass ordering have two major drawbacks. They either require an excessive budget (in terms of the number of compilation passes) at compile time or fail to generalize to unseen programs. In this work, instead of predicting passes sequentially, we directly learn a policy on the pass sequence space, which outperforms the default -Oz flag by an average of 4.5% over a large collection (4683) of unseen code repositories from diverse domains across 14 datasets. To achieve this, we first identify a small set (termed coreset) of pass sequences that generally optimize the size of most programs. Then, a policy is learned to pick the optimal sequences by predicting the normalized values of the pass sequences in the coreset. Our results demonstrate that existing human-designed compiler passes can be improved with a simple yet effective technique that leverages pass sequence space which contains dense rewards, while approaches operating on the individual pass space may suffer from issues of sparse reward, and do not generalize well to held-out programs from different domains. Website: https://rlcompopt.github.io.
Author Information
Youwei Liang (UC San Diego)

PhD student at UCSD ECE
Kevin Stone (Meta AI)
Ali Shameli
Chris Cummins (Meta AI)
Mostafa Elhoushi (Meta)
Jiadong Guo (ETHZ - ETH Zurich)
Benoit Steiner (Anthropic)
Xiaomeng Yang (Meta AI)
Pengtao Xie (UC San Diego)
Hugh Leather (Facebook AI Research)
Yuandong Tian (Facebook AI Research)
More from the Same Authors
-
2021 : Learning Space Partitions for Path Planning »
Kevin Yang · Tianjun Zhang · Chris Cummins · Brandon Cui · Benoit Steiner · Linnan Wang · Joseph E Gonzalez · Dan Klein · Yuandong Tian -
2023 : Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer »
Yuandong Tian · Yiping Wang · Beidi Chen · Simon Du -
2023 : On Data Quality and Speed of Training: Bad Data Slows Training »
Newsha Ardalani · Mostafa Elhoushi · Carole-Jean Wu -
2023 : Making Scalable Meta Learning Practical »
Sang Keun Choe · Sanket Vaibhav Mehta · Hwijeen Ahn · Willie Neiswanger · Pengtao Xie · Emma Strubell · Eric Xing -
2023 : H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models »
Zhenyu Zhang · Ying Sheng · Tianyi Zhou · Tianlong Chen · Lianmin Zheng · Ruisi Cai · Zhao Song · Yuandong Tian · Christopher Re · Clark Barrett · Zhangyang “Atlas” Wang · Beidi Chen -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems »
Aaron Ferber · Taoan Huang · Daochen Zha · Martin Schubert · Benoit Steiner · Bistra Dilkina · Yuandong Tian -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning »
Taoan Huang · Aaron Ferber · Yuandong Tian · Bistra Dilkina · Benoit Steiner -
2023 : Contributed talks 2 »
Simon Du · Wei Huang · Yuandong Tian -
2023 Oral: Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time »
Zichang Liu · Jue Wang · Tri Dao · Tianyi Zhou · Binhang Yuan · Zhao Song · Anshumali Shrivastava · Ce Zhang · Yuandong Tian · Christopher Re · Beidi Chen -
2023 Poster: Masked Trajectory Models for Prediction, Representation, and Control »
Philipp Wu · Arjun Majumdar · Kevin Stone · Yixin Lin · Igor Mordatch · Pieter Abbeel · Aravind Rajeswaran -
2023 Poster: SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems »
Aaron Ferber · Taoan Huang · Daochen Zha · Martin Schubert · Benoit Steiner · Bistra Dilkina · Yuandong Tian -
2023 Poster: MODeL: Memory Optimizations for Deep Learning »
Benoit Steiner · Mostafa Elhoushi · Jacob Kahn · James Hegarty -
2023 Poster: Improving Bi-level Optimization Based Methods with Inspiration from Humans' Classroom Study Techniques »
Pengtao Xie -
2023 Poster: Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning »
Taoan Huang · Aaron Ferber · Yuandong Tian · Bistra Dilkina · Benoit Steiner -
2023 Poster: Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time »
Zichang Liu · Jue Wang · Tri Dao · Tianyi Zhou · Binhang Yuan · Zhao Song · Anshumali Shrivastava · Ce Zhang · Yuandong Tian · Christopher Re · Beidi Chen -
2023 Poster: Fair and Accurate Decision Making through Group-Aware Learning »
Ramtin Hosseini · Li Zhang · Bhanu Garg · Pengtao Xie -
2022 Poster: Graph Neural Architecture Search Under Distribution Shifts »
Yijian Qin · Xin Wang · Ziwei Zhang · Pengtao Xie · Wenwu Zhu -
2022 Poster: Flashlight: Enabling Innovation in Tools for Machine Learning »
Jacob Kahn · Vineel Pratap · Tatiana Likhomanenko · Qiantong Xu · Awni Hannun · Jeff Cai · Paden Tomasello · Ann Lee · Edouard Grave · Gilad Avidov · Benoit Steiner · Vitaliy Liptchinsky · Gabriel Synnaeve · Ronan Collobert -
2022 Spotlight: Flashlight: Enabling Innovation in Tools for Machine Learning »
Jacob Kahn · Vineel Pratap · Tatiana Likhomanenko · Qiantong Xu · Awni Hannun · Jeff Cai · Paden Tomasello · Ann Lee · Edouard Grave · Gilad Avidov · Benoit Steiner · Vitaliy Liptchinsky · Gabriel Synnaeve · Ronan Collobert -
2022 Spotlight: Graph Neural Architecture Search Under Distribution Shifts »
Yijian Qin · Xin Wang · Ziwei Zhang · Pengtao Xie · Wenwu Zhu -
2021 Workshop: Self-Supervised Learning for Reasoning and Perception »
Pengtao Xie · Shanghang Zhang · Ishan Misra · Pulkit Agrawal · Katerina Fragkiadaki · Ruisi Zhang · Tassilo Klein · Asli Celikyilmaz · Mihaela van der Schaar · Eric Xing