Timezone: »
Model-based imitation learning (MBIL) is a popular reinforcement learning method that improves sample efficiency on high-dimension input sources, such as images and videos. Following the convention of MBIL research, existing algorithms are highly deceptive by task-irrelevant information, especially moving distractors in videos. To tackle this problem, we propose a new algorithm - named Separated Model-based Adversarial Imitation Learning (SeMAIL) - decoupling the environment dynamics into two parts by task-relevant dependency, which is determined by agent actions, and training separately. In this way, the agent can imagine its trajectories and imitate the expert behavior efficiently in task-relevant state space. Our method achieves near-expert performance on various visual control tasks with complex observations and the more challenging tasks with different backgrounds from expert observations.
Author Information
Shenghua Wan (Nanjing University)
My research interests include Reinforcement Learning.
Yucen Wang (Nanjing University)
Minghao Shao (Nanjing University)
Ruying Chen
De-Chuan Zhan (Nanjing University)
More from the Same Authors
-
2018 Poster: Rectify Heterogeneous Models with Semantic Mapping »
Han-Jia Ye · De-Chuan Zhan · Yuan Jiang · Zhi-Hua Zhou -
2018 Oral: Rectify Heterogeneous Models with Semantic Mapping »
Han-Jia Ye · De-Chuan Zhan · Yuan Jiang · Zhi-Hua Zhou