Timezone: »
Macro-AUC is the arithmetic mean of the class-wise AUCs in multi-label learning and is commonly used in practice. However, its theoretical understanding is far lacking. Toward solving it, we characterize the generalization properties of various learning algorithms based on the corresponding surrogate losses w.r.t. Macro-AUC. We theoretically identify a critical factor of the dataset affecting the generalization bounds: the label-wise class imbalance. Our results on the imbalance-aware error bounds show that the widely-used univariate loss-based algorithm is more sensitive to the label-wise class imbalance than the proposed pairwise and reweighted loss-based ones, which probably implies its worse performance. Moreover, empirical results on various datasets corroborate our theory findings. To establish it, technically, we propose a new (and more general) McDiarmid-type concentration inequality, which may be of independent interest.
Author Information
Guoqiang Wu (Shandong University)
Chongxuan Li (Tsinghua University)
Yilong Yin (Shandong University)
More from the Same Authors
-
2023 : MissDiff: Training Diffusion Models on Tabular Data with Missing Values »
Yidong Ouyang · Liyan Xie · Chongxuan Li · Guang Cheng -
2023 Poster: Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning »
Cheng Lu · Huayu Chen · Jianfei Chen · Hang Su · Chongxuan Li · Jun Zhu -
2023 Poster: Revisiting Discriminative vs. Generative Classifiers: Theory and Implications »
Chenyu Zheng · Guoqiang Wu · Fan Bao · Yue Cao · Chongxuan Li · Jun Zhu -
2023 Poster: One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale »
Fan Bao · Shen Nie · Kaiwen Xue · Chongxuan Li · Shi Pu · Yaole Wang · Gang Yue · Yue Cao · Hang Su · Jun Zhu -
2022 Poster: Maximum Likelihood Training for Score-based Diffusion ODEs by High Order Denoising Score Matching »
Cheng Lu · Kaiwen Zheng · Fan Bao · Jianfei Chen · Chongxuan Li · Jun Zhu -
2022 Poster: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang -
2022 Spotlight: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang -
2022 Spotlight: Maximum Likelihood Training for Score-based Diffusion ODEs by High Order Denoising Score Matching »
Cheng Lu · Kaiwen Zheng · Fan Bao · Jianfei Chen · Chongxuan Li · Jun Zhu -
2022 Poster: Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models »
Fan Bao · Chongxuan Li · Jiacheng Sun · Jun Zhu · Bo Zhang -
2022 Spotlight: Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models »
Fan Bao · Chongxuan Li · Jiacheng Sun · Jun Zhu · Bo Zhang -
2021 Poster: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2021 Spotlight: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2020 Poster: Understanding and Stabilizing GANs' Training Dynamics Using Control Theory »
Kun Xu · Chongxuan Li · Jun Zhu · Bo Zhang -
2020 Poster: Learning to Learn Kernels with Variational Random Features »
Xiantong Zhen · Haoliang Sun · Yingjun Du · Jun Xu · Yilong Yin · Ling Shao · Cees Snoek