Timezone: »
Poster
On Provable Copyright Protection for Generative Models
Nikhil Vyas · Sham Kakade · Boaz Barak
There is a growing concern that learned conditional generative models may output samples that are substantially similar to some copyrighted data $C$ that was in their training set. We give a formal definition of near access-freeness (NAF) and prove bounds on the probability that a model satisfying this definition outputs a sample similar to $C$, even if $C$ is included in its training set. Roughly speaking, a generative model $p$ is $k$-NAF if for every potentially copyrighted data $C$, the output of $p$ diverges by at most $k$-bits from the output of a model $q$ that did not access $C$ at all. We also give generative model learning algorithms, which efficiently modify the original generative model learning algorithm in a black box manner, that output generative models with strong bounds on the probability of sampling protected content. Furthermore, we provide promising experiments for both language (transformers) and image (diffusion) generative models, showing minimal degradation in output quality while ensuring strong protections against sampling protected content.
Author Information
Nikhil Vyas (Harvard University.)
Sham Kakade (Harvard University and Amazon Scholar)
Boaz Barak (Harvard University)
More from the Same Authors
-
2022 : The Power and Limitation of Pretraining-Finetuning for Linear Regression under Covariate Shift »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2023 : On Privileged and Convergent Bases in Neural Network Representations »
Davis Brown · Nikhil Vyas · Yamini Bansal -
2023 : Predicting Task Forgetting in Large Language Models »
Anat Kleiman · Jonathan Frankle · Sham Kakade · Mansheej Paul -
2023 Poster: Finite-Sample Analysis of Learning High-Dimensional Single ReLU Neuron »
Jingfeng Wu · Difan Zou · Zixiang Chen · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2023 Poster: Hardness of Independent Learning and Sparse Equilibrium Computation in Markov Games »
Dylan Foster · Noah Golowich · Sham Kakade -
2022 Poster: Sparsity in Partially Controllable Linear Systems »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2022 Poster: Last Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 Poster: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Spotlight: Sparsity in Partially Controllable Linear Systems »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2022 Oral: Last Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 Spotlight: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Poster: Inductive Biases and Variable Creation in Self-Attention Mechanisms »
Benjamin Edelman · Surbhi Goel · Sham Kakade · Cyril Zhang -
2022 Spotlight: Inductive Biases and Variable Creation in Self-Attention Mechanisms »
Benjamin Edelman · Surbhi Goel · Sham Kakade · Cyril Zhang