Timezone: »
We present a representation-driven framework for reinforcement learning. By representing policies as estimates of their expected values, we leverage techniques from contextual bandits to guide exploration and exploitation. Particularly, embedding a policy network into a linear feature space allows us to reframe the exploration-exploitation problem as a representation-exploitation problem, where good policy representations enable optimal exploration. We demonstrate the effectiveness of this framework through its application to evolutionary and policy gradient-based approaches, leading to significantly improved performance compared to traditional methods. Our framework provides a new perspective on reinforcement learning, highlighting the importance of policy representation in determining optimal exploration-exploitation strategies.
Author Information
Ofir Nabati (Technion)
Guy Tennenholtz (Google Research)
Shie Mannor (Technion)
More from the Same Authors
-
2023 : Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding »
Alizée Pace · Hugo Yèche · Bernhard Schölkopf · Gunnar Ratsch · Guy Tennenholtz -
2023 : Optimization or Architecture: What Matters in Non-Linear Filtering? »
Ido Greenberg · Netanel Yannay · Shie Mannor -
2023 : Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding »
Alizée Pace · Hugo Yèche · Bernhard Schölkopf · Gunnar Ratsch · Guy Tennenholtz -
2023 : Optimization or Architecture: What Matters in Non-Linear Filtering? »
Ido Greenberg · Netanel Yannay · Shie Mannor -
2023 : Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding »
Alizée Pace · Hugo Yèche · Bernhard Schölkopf · Gunnar Ratsch · Guy Tennenholtz -
2023 : Optimization or Architecture: What Matters in Non-Linear Filtering? »
Ido Greenberg · Netanel Yannay · Shie Mannor -
2023 Poster: Learning to Initiate and Reason in Event-Driven Cascading Processes »
Yuval Atzmon · Eli Meirom · Shie Mannor · Gal Chechik -
2023 Poster: Reinforcement Learning with History Dependent Dynamic Contexts »
Guy Tennenholtz · Nadav Merlis · Lior Shani · Martin Mladenov · Craig Boutilier -
2023 Poster: Learning Hidden Markov Models When the Locations of Missing Observations are Unknown »
BINYAMIN PERETS · Mark Kozdoba · Shie Mannor -
2023 Poster: PPG Reloaded: An Empirical Study on What Matters in Phasic Policy Gradient »
Kaixin Wang · Zhou Daquan · Jiashi Feng · Shie Mannor -
2023 Poster: Reward-Mixing MDPs with Few Latent Contexts are Learnable »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Poster: Actor-Critic based Improper Reinforcement Learning »
Mohammadi Zaki · Avi Mohan · Aditya Gopalan · Shie Mannor -
2022 Poster: Optimizing Tensor Network Contraction Using Reinforcement Learning »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2022 Poster: The Geometry of Robust Value Functions »
Kaixin Wang · Navdeep Kumar · Kuangqi Zhou · Bryan Hooi · Jiashi Feng · Shie Mannor -
2022 Spotlight: The Geometry of Robust Value Functions »
Kaixin Wang · Navdeep Kumar · Kuangqi Zhou · Bryan Hooi · Jiashi Feng · Shie Mannor -
2022 Spotlight: Actor-Critic based Improper Reinforcement Learning »
Mohammadi Zaki · Avi Mohan · Aditya Gopalan · Shie Mannor -
2022 Spotlight: Optimizing Tensor Network Contraction Using Reinforcement Learning »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2022 Poster: Coordinated Attacks against Contextual Bandits: Fundamental Limits and Defense Mechanisms »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Spotlight: Coordinated Attacks against Contextual Bandits: Fundamental Limits and Defense Mechanisms »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2021 : Invited Speaker: Shie Mannor: Lenient Regret »
Shie Mannor -
2021 Poster: Online Limited Memory Neural-Linear Bandits with Likelihood Matching »
Ofir Nabati · Tom Zahavy · Shie Mannor -
2021 Spotlight: Online Limited Memory Neural-Linear Bandits with Likelihood Matching »
Ofir Nabati · Tom Zahavy · Shie Mannor -
2018 Poster: Beyond the One-Step Greedy Approach in Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2018 Oral: Beyond the One-Step Greedy Approach in Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2017 Workshop: Lifelong Learning: A Reinforcement Learning Approach »
Sarath Chandar · Balaraman Ravindran · Daniel J. Mankowitz · Shie Mannor · Tom Zahavy -
2017 Poster: Consistent On-Line Off-Policy Evaluation »
Assaf Hallak · Shie Mannor -
2017 Talk: Consistent On-Line Off-Policy Evaluation »
Assaf Hallak · Shie Mannor -
2017 Poster: End-to-End Differentiable Adversarial Imitation Learning »
Nir Baram · Oron Anschel · Itai Caspi · Shie Mannor -
2017 Talk: End-to-End Differentiable Adversarial Imitation Learning »
Nir Baram · Oron Anschel · Itai Caspi · Shie Mannor