Timezone: »
Poster
Federated Heavy Hitter Recovery under Linear Sketching
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh
Motivated by real-life deployments of multi-round federated analytics with secure aggregation, we investigate the fundamental communication-accuracy tradeoffs of the heavy hitter discovery and approximate (open-domain) histogram problems under a linear sketching constraint. We propose efficient algorithms based on local subsampling and invertible bloom look-up tables (IBLTs). We also show that our algorithms are information-theoretically optimal for a broad class of interactive schemes. The results show that the linear sketching constraint does increase the communication cost for both tasks by introducing an extra linear dependence on the number of users in a round. Moreover, our results also establish a separation between the communication cost for heavy hitter discovery and approximate histogram in the multi-round setting. The dependence on the number of rounds $R$ is at most logarithmic for heavy hitter discovery whereas that of approximate histogram is $\Theta(\sqrt{R})$. We also empirically demonstrate our findings.
Author Information
Adria Gascon (Google)
Peter Kairouz (Google)
Ziteng Sun (Google Research)
Ananda Suresh (Google Research)
More from the Same Authors
-
2021 : Neural Network-based Estimation of the MMSE »
Mario Diaz · Peter Kairouz · Lalitha Sankar -
2021 : The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Peter Kairouz · Ziyu Liu · Thomas Steinke -
2021 : On the Renyi Differential Privacy of the Shuffle Model »
Antonious Girgis · Deepesh Data · Suhas Diggavi · Ananda Theertha Suresh · Peter Kairouz -
2021 : Practical and Private (Deep) Learning without Sampling orShuffling »
Peter Kairouz · Hugh B McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 : Learning with User-Level Privacy »
Daniel A Levy · Ziteng Sun · Kareem Amin · Satyen Kale · Alex Kulesza · Mehryar Mohri · Ananda Theertha Suresh -
2021 : Industrial Booth (Google) »
Zheng Xu · Peter Kairouz -
2022 : Fair Universal Representations using Adversarial Models »
Monica Welfert · Peter Kairouz · Jiachun Liao · Chong Huang · Lalitha Sankar -
2023 : Unleashing the Power of Randomization in Auditing Differentially Private ML »
Krishna Pillutla · Galen Andrew · Peter Kairouz · Hugh B McMahan · Alina Oprea · Sewoong Oh -
2023 : Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation »
Wei-Ning Chen · Dan Song · Ayfer Ozgur · Peter Kairouz -
2023 : Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 : SpecTr: Fast Speculative Decoding via Optimal Transport »
Ziteng Sun · Ananda Suresh · Jae Ro · Ahmad Beirami · Himanshu Jain · Felix Xinnan Yu · Michael Riley · Sanjiv Kumar -
2023 : Panel Discussion »
Peter Kairouz · Song Han · Kamalika Chaudhuri · Florian Tramer -
2023 Workshop: Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and Opportunities »
Zheng Xu · Peter Kairouz · Bo Li · Tian Li · John Nguyen · Jianyu Wang · Shiqiang Wang · Ayfer Ozgur -
2023 Poster: Subset-Based Instance Optimality in Private Estimation »
Travis Dick · Alex Kulesza · Ziteng Sun · Ananda Suresh -
2023 Poster: Private Federated Learning with Autotuned Compression »
Enayat Ullah · Christopher Choquette-Choo · Peter Kairouz · Sewoong Oh -
2023 Poster: Algorithms for bounding contribution for histogram estimation under user-level privacy »
Yuhan Liu · Ananda Suresh · Wennan Zhu · Peter Kairouz · Marco Gruteser -
2023 Poster: User-level Private Stochastic Convex Optimization with Optimal Rates »
Raef Bassily · Ziteng Sun -
2022 Poster: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Poster: The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation »
Wei-Ning Chen · Ayfer Ozgur · Peter Kairouz -
2022 Spotlight: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Oral: The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation »
Wei-Ning Chen · Ayfer Ozgur · Peter Kairouz -
2022 Poster: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2022 Spotlight: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2021 : Industrial Panel »
Nathalie Baracaldo · Shiqiang Wang · Peter Kairouz · Zheng Xu · Kshitiz Malik · Tao Zhang -
2021 : Contributed Talks Session 1 »
Marika Swanberg · Samuel Haney · Peter Kairouz -
2021 Poster: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 Poster: The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Peter Kairouz · Ziyu Liu · Thomas Steinke -
2021 Spotlight: The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Peter Kairouz · Ziyu Liu · Thomas Steinke -
2021 Spotlight: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 Poster: Robust Testing and Estimation under Manipulation Attacks »
Jayadev Acharya · Ziteng Sun · Huanyu Zhang -
2021 Spotlight: Robust Testing and Estimation under Manipulation Attacks »
Jayadev Acharya · Ziteng Sun · Huanyu Zhang -
2020 Poster: Context Aware Local Differential Privacy »
Jayadev Acharya · Kallista Bonawitz · Peter Kairouz · Daniel Ramage · Ziteng Sun -
2019 Poster: Agnostic Federated Learning »
Mehryar Mohri · Gary Sivek · Ananda Suresh -
2019 Oral: Agnostic Federated Learning »
Mehryar Mohri · Gary Sivek · Ananda Suresh -
2019 Poster: Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters »
Jayadev Acharya · Ziteng Sun -
2019 Oral: Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters »
Jayadev Acharya · Ziteng Sun -
2018 Poster: INSPECTRE: Privately Estimating the Unseen »
Jayadev Acharya · Gautam Kamath · Ziteng Sun · Huanyu Zhang -
2018 Oral: INSPECTRE: Privately Estimating the Unseen »
Jayadev Acharya · Gautam Kamath · Ziteng Sun · Huanyu Zhang -
2017 Poster: A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky · Ananda Suresh -
2017 Talk: A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky · Ananda Suresh