Timezone: »
There is extensive interest in metric learning methods for image retrieval. Many metric learning loss functions focus on learning a correct ranking of training samples, but strongly overfit semantically inconsistent labels and require a large amount of data. To address these shortcomings, we propose a new metric learning method, called contextual loss, which optimizes contextual similarity in addition to cosine similarity. Our contextual loss implicitly enforces semantic consistency among neighbors while converging to the correct ranking. We empirically show that the proposed loss is more robust to label noise, and is less prone to overfitting even when a large portion of train data is withheld. Extensive experiments demonstrate that our method achieves a new state-of-the-art across four image retrieval benchmarks and multiple different evaluation settings. Code is available at: https://github.com/Chris210634/metric-learning-using-contextual-similarity
Author Information
Christopher Liao (Boston University)
Theodoros Tsiligkaridis (MIT Lincoln Laboratory, Massachusetts Institute of Technology)
Brian Kulis (Boston University)
More from the Same Authors
-
2021 : On Frank-Wolfe Adversarial Training »
Theodoros Tsiligkaridis · Jay Roberts -
2023 : ERM++: An Improved Baseline for Domain Generalization »
Piotr Teterwak · Kuniaki Saito · Theodoros Tsiligkaridis · Kate Saenko · Bryan Plummer -
2023 Poster: Domain Adaptation for Time Series Under Feature and Label Shifts »
Huan He · Owen Queen · Teddy Koker · Consuelo Cuevas · Theodoros Tsiligkaridis · Marinka Zitnik -
2022 Workshop: Machine Learning for Audio Synthesis »
Rachel Manzelli · Brian Kulis · Sadie Allen · Sander Dieleman · Yu Zhang -
2022 : Opening remarks »
Brian Kulis -
2022 Poster: Faster Algorithms for Learning Convex Functions »
Ali Siahkamari · Durmus Alp Emre Acar · Christopher Liao · Kelly Geyer · Venkatesh Saligrama · Brian Kulis -
2022 Spotlight: Faster Algorithms for Learning Convex Functions »
Ali Siahkamari · Durmus Alp Emre Acar · Christopher Liao · Kelly Geyer · Venkatesh Saligrama · Brian Kulis -
2020 Poster: Piecewise Linear Regression via a Difference of Convex Functions »
Ali Siahkamari · Aditya Gangrade · Brian Kulis · Venkatesh Saligrama -
2020 Poster: Deep Divergence Learning »
Kubra Cilingir · Rachel Manzelli · Brian Kulis -
2019 Workshop: Joint Workshop on On-Device Machine Learning & Compact Deep Neural Network Representations (ODML-CDNNR) »
Sujith Ravi · Zornitsa Kozareva · Lixin Fan · Max Welling · Yurong Chen · Werner Bailer · Brian Kulis · Haoji Hu · Jonathan Dekhtiar · Yingyan Lin · Diana Marculescu