Timezone: »
Diffusion models are a class of probabilistic generative models that have been widely used as a prior for image processing tasks like text conditional generation and inpainting. We demonstrate that these models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems. In these applications, diffusion models can implicitly represent knowledge about outliers and extreme events; however, querying that knowledge through conditional sampling or measuring probabilities is surprisingly difficult. Existing methods for conditional sampling at inference time seek mainly to enforce the constraints, which is insufficient to match the statistics of the distribution or compute the probability of the chosen events. To achieve these ends, optimally one would use the conditional score function, but its computation is typically intractable. In this work, we develop a probabilistic approximation scheme for the conditional score function which provably converges to the true distribution as the noise level decreases. With this scheme we are able to sample conditionally on nonlinear user-defined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
Author Information
Marc Finzi (NYU)
Anudhyan Boral (Google)
Andrew Wilson (New York University)
Fei Sha (Google Research)
Leonardo Zepeda-Nunez (Google)
More from the Same Authors
-
2022 : How much Data is Augmentation Worth? »
Jonas Geiping · Gowthami Somepalli · Ravid Shwartz-Ziv · Andrew Wilson · Tom Goldstein · Micah Goldblum -
2022 : Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations »
Polina Kirichenko · Polina Kirichenko · Pavel Izmailov · Andrew Wilson -
2022 : Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Prior »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2023 : Understanding the Detrimental Class-level Effects of Data Augmentation »
Polina Kirichenko · Mark Ibrahim · Randall Balestriero · Diane Bouchacourt · Ramakrishna Vedantam · Hamed Firooz · Andrew Wilson -
2023 : Protein Design with Guided Discrete Diffusion »
Nate Gruver · Samuel Stanton · Nathan Frey · Tim G. J. Rudner · Isidro Hotzel · Julien Lafrance-Vanasse · Arvind Rajpal · Kyunghyun Cho · Andrew Wilson -
2023 Poster: Simple and Fast Group Robustness by Automatic Feature Reweighting »
Shikai Qiu · Andres Potapczynski · Pavel Izmailov · Andrew Wilson -
2023 Poster: Pre-computed memory or on-the-fly encoding? A hybrid approach to retrieval augmentation makes the most of your compute »
Michiel de Jong · Yury Zemlyanskiy · Nicholas FitzGerald · Joshua Ainslie · Sumit Sanghai · Fei Sha · William Cohen -
2023 Poster: Function-Space Regularization in Neural Networks: A Probabilistic Perspective »
Tim G. J. Rudner · Sanyam Kapoor · Shikai Qiu · Andrew Wilson -
2022 : Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Prior »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2021 Poster: SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes »
Sanyam Kapoor · Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2021 Oral: SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes »
Sanyam Kapoor · Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2021 Poster: A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups »
Marc Finzi · Max Welling · Andrew Wilson -
2021 Poster: Randomized Entity-wise Factorization for Multi-Agent Reinforcement Learning »
Shariq Iqbal · Christian Schroeder · Bei Peng · Wendelin Boehmer · Shimon Whiteson · Fei Sha -
2021 Oral: A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups »
Marc Finzi · Max Welling · Andrew Wilson -
2021 Oral: Randomized Entity-wise Factorization for Multi-Agent Reinforcement Learning »
Shariq Iqbal · Christian Schroeder · Bei Peng · Wendelin Boehmer · Shimon Whiteson · Fei Sha -
2020 Poster: Semi-Supervised Learning with Normalizing Flows »
Pavel Izmailov · Polina Kirichenko · Marc Finzi · Andrew Wilson -
2020 Poster: Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data »
Marc Finzi · Samuel Stanton · Pavel Izmailov · Andrew Wilson -
2019 : poster session I »
Nicholas Rhinehart · Yunhao Tang · Vinay Prabhu · Dian Ang Yap · Alexander Wang · Marc Finzi · Manoj Kumar · You Lu · Abhishek Kumar · Qi Lei · Michael Przystupa · Nicola De Cao · Polina Kirichenko · Pavel Izmailov · Andrew Wilson · Jakob Kruse · Diego Mesquita · Mario Lezcano Casado · Thomas Müller · Keir Simmons · Andrei Atanov -
2019 Poster: Actor-Attention-Critic for Multi-Agent Reinforcement Learning »
Shariq Iqbal · Fei Sha -
2019 Oral: Actor-Attention-Critic for Multi-Agent Reinforcement Learning »
Shariq Iqbal · Fei Sha