Timezone: »
We study the design decision of publicly available instruction tuning methods, by reproducing and breaking down the development of Flan 2022 (Chung et al., 2022). Through careful ablation studies on the Flan Collection of tasks and methods, we tease apart the effect of design decisions which enable Flan-T5 to outperform prior work by 3-17% across evaluation settings. We find task balancing and enrichment techniques are overlooked but critical to effective instruction tuning, and in particular, training with mixed prompt settings (zero-shot, few-shot, chain-of-thought) actually yields equivalent or stronger (2%) performance in all settings. In further experiments we show Flan-T5 requires less finetuning to converge higher and faster than T5 on single downstream tasks -- motivating instruction-tuned models as more computationally-efficient starting checkpoints for new tasks. Finally, to accelerate research on instruction tuning, we make the Flan 2022 collection of datasets, templates, and methods publicly available.
Author Information
Shayne Longpre (Massachusetts Institute of Technology)
Le Hou (Google Research)
Tu Vu (College of Information and Computer Science, University of Massachusetts, Amherst)
Albert Webson (Brown University)
Hyung Won Chung (MIT)
Incoming Google AI Resident (2019)
Yi Tay (Google)
Denny Zhou (Google Brain)
Quoc Le (Google Brain)
Barret Zoph (Google)
Jason Wei (OpenAI)
Adam Roberts (Google DeepMind)
More from the Same Authors
-
2023 : DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining »
Sang Michael Xie · Hieu Pham · Xuanyi Dong · Nan Du · Hanxiao Liu · Yifeng Lu · Percy Liang · Quoc Le · Tengyu Ma · Adams Wei Yu -
2023 Poster: Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization »
Zi-Hao Qiu · Quanqi Hu · Zhuoning Yuan · Denny Zhou · Lijun Zhang · Tianbao Yang -
2023 Poster: Scaling Vision Transformers to 22 Billion Parameters »
Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby -
2023 Poster: Large Language Models Can Be Easily Distracted by Irrelevant Context »
Haoyue Shi · Xinyun Chen · Kanishka Misra · Nathan Scales · David Dohan · Ed Chi · Nathanael Schärli · Denny Zhou -
2023 Oral: Scaling Vision Transformers to 22 Billion Parameters »
Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby -
2023 Poster: Brainformers: Trading Simplicity for Efficiency »
Yanqi Zhou · Nan Du · Yanping Huang · Daiyi Peng · Chang Lan · Da Huang · Siamak Shakeri · David So · Andrew Dai · Yifeng Lu · Zhifeng Chen · Quoc Le · Claire Cui · James Laudon · Jeff Dean -
2023 Poster: Large Language Models Struggle to Learn Long-Tail Knowledge »
Nikhil Kandpal · Haikang Deng · Adam Roberts · Eric Wallace · Colin Raffel -
2022 Poster: Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance »
Zhuoning Yuan · Yuexin Wu · Zi-Hao Qiu · Xianzhi Du · Lijun Zhang · Denny Zhou · Tianbao Yang -
2022 Poster: Transformer Quality in Linear Time »
Weizhe Hua · Zihang Dai · Hanxiao Liu · Quoc Le -
2022 Poster: GLaM: Efficient Scaling of Language Models with Mixture-of-Experts »
Nan Du · Yanping Huang · Andrew Dai · Simon Tong · Dmitry Lepikhin · Yuanzhong Xu · Maxim Krikun · Yanqi Zhou · Adams Wei Yu · Orhan Firat · Barret Zoph · William Fedus · Maarten Bosma · Zongwei Zhou · Tao Wang · Emma Wang · Kellie Webster · Marie Pellat · Kevin Robinson · Kathleen Meier-Hellstern · Toju Duke · Lucas Dixon · Kun Zhang · Quoc Le · Yonghui Wu · Zhifeng Chen · Claire Cui -
2022 Spotlight: GLaM: Efficient Scaling of Language Models with Mixture-of-Experts »
Nan Du · Yanping Huang · Andrew Dai · Simon Tong · Dmitry Lepikhin · Yuanzhong Xu · Maxim Krikun · Yanqi Zhou · Adams Wei Yu · Orhan Firat · Barret Zoph · William Fedus · Maarten Bosma · Zongwei Zhou · Tao Wang · Emma Wang · Kellie Webster · Marie Pellat · Kevin Robinson · Kathleen Meier-Hellstern · Toju Duke · Lucas Dixon · Kun Zhang · Quoc Le · Yonghui Wu · Zhifeng Chen · Claire Cui -
2022 Spotlight: Transformer Quality in Linear Time »
Weizhe Hua · Zihang Dai · Hanxiao Liu · Quoc Le -
2022 Spotlight: Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance »
Zhuoning Yuan · Yuexin Wu · Zi-Hao Qiu · Xianzhi Du · Lijun Zhang · Denny Zhou · Tianbao Yang -
2021 Poster: Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision »
Chao Jia · Yinfei Yang · Ye Xia · Yi-Ting Chen · Zarana Parekh · Hieu Pham · Quoc Le · Yun-Hsuan Sung · Zhen Li · Tom Duerig -
2021 Oral: Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision »
Chao Jia · Yinfei Yang · Ye Xia · Yi-Ting Chen · Zarana Parekh · Hieu Pham · Quoc Le · Yun-Hsuan Sung · Zhen Li · Tom Duerig -
2021 Poster: SpreadsheetCoder: Formula Prediction from Semi-structured Context »
Xinyun Chen · Petros Maniatis · Rishabh Singh · Charles Sutton · Hanjun Dai · Max Lin · Denny Zhou -
2021 Poster: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Spotlight: SpreadsheetCoder: Formula Prediction from Semi-structured Context »
Xinyun Chen · Petros Maniatis · Rishabh Singh · Charles Sutton · Hanjun Dai · Max Lin · Denny Zhou -
2021 Spotlight: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Poster: EfficientNetV2: Smaller Models and Faster Training »
Mingxing Tan · Quoc Le -
2021 Poster: Towards Domain-Agnostic Contrastive Learning »
Vikas Verma · Thang Luong · Kenji Kawaguchi · Hieu Pham · Quoc Le -
2021 Spotlight: EfficientNetV2: Smaller Models and Faster Training »
Mingxing Tan · Quoc Le -
2021 Spotlight: Towards Domain-Agnostic Contrastive Learning »
Vikas Verma · Thang Luong · Kenji Kawaguchi · Hieu Pham · Quoc Le -
2020 Poster: Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection »
Mao Ye · Chengyue Gong · Lizhen Nie · Denny Zhou · Adam Klivans · Qiang Liu -
2020 Poster: Go Wide, Then Narrow: Efficient Training of Deep Thin Networks »
Denny Zhou · Mao Ye · Chen Chen · Tianjian Meng · Mingxing Tan · Xiaodan Song · Quoc Le · Qiang Liu · Dale Schuurmans -
2020 Poster: AutoML-Zero: Evolving Machine Learning Algorithms From Scratch »
Esteban Real · Chen Liang · David So · Quoc Le -
2019 Poster: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks »
Mingxing Tan · Quoc Le -
2019 Poster: Learning to Groove with Inverse Sequence Transformations »
Jon Gillick · Adam Roberts · Jesse Engel · Douglas Eck · David Bamman -
2019 Poster: The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study »
Daniel Park · Jascha Sohl-Dickstein · Quoc Le · Samuel Smith -
2019 Poster: The Evolved Transformer »
David So · Quoc Le · Chen Liang -
2019 Oral: The Evolved Transformer »
David So · Quoc Le · Chen Liang -
2019 Oral: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks »
Mingxing Tan · Quoc Le -
2019 Oral: The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study »
Daniel Park · Jascha Sohl-Dickstein · Quoc Le · Samuel Smith -
2019 Oral: Learning to Groove with Inverse Sequence Transformations »
Jon Gillick · Adam Roberts · Jesse Engel · Douglas Eck · David Bamman -
2018 Poster: Understanding and Simplifying One-Shot Architecture Search »
Gabriel Bender · Pieter-Jan Kindermans · Barret Zoph · Vijay Vasudevan · Quoc Le -
2018 Poster: Learning Longer-term Dependencies in RNNs with Auxiliary Losses »
Trieu H Trinh · Andrew Dai · Thang Luong · Quoc Le -
2018 Oral: Learning Longer-term Dependencies in RNNs with Auxiliary Losses »
Trieu H Trinh · Andrew Dai · Thang Luong · Quoc Le -
2018 Oral: Understanding and Simplifying One-Shot Architecture Search »
Gabriel Bender · Pieter-Jan Kindermans · Barret Zoph · Vijay Vasudevan · Quoc Le -
2018 Poster: Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games? »
Maithra Raghu · Alexander Irpan · Jacob Andreas · Bobby Kleinberg · Quoc Le · Jon Kleinberg -
2018 Poster: A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music »
Adam Roberts · Jesse Engel · Colin Raffel · Curtis Hawthorne · Douglas Eck -
2018 Oral: A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music »
Adam Roberts · Jesse Engel · Colin Raffel · Curtis Hawthorne · Douglas Eck -
2018 Oral: Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games? »
Maithra Raghu · Alexander Irpan · Jacob Andreas · Bobby Kleinberg · Quoc Le · Jon Kleinberg -
2018 Poster: Efficient Neural Architecture Search via Parameters Sharing »
Hieu Pham · Melody Guan · Barret Zoph · Quoc Le · Jeff Dean -
2018 Oral: Efficient Neural Architecture Search via Parameters Sharing »
Hieu Pham · Melody Guan · Barret Zoph · Quoc Le · Jeff Dean -
2017 Poster: Large-Scale Evolution of Image Classifiers »
Esteban Real · Sherry Moore · Andrew Selle · Saurabh Saxena · Yutaka Leon Suematsu · Jie Tan · Quoc Le · Alexey Kurakin -
2017 Poster: Neural Optimizer Search using Reinforcement Learning »
Irwan Bello · Barret Zoph · Vijay Vasudevan · Quoc Le -
2017 Poster: Device Placement Optimization with Reinforcement Learning »
Azalia Mirhoseini · Hieu Pham · Quoc Le · benoit steiner · Mohammad Norouzi · Rasmus Larsen · Yuefeng Zhou · Naveen Kumar · Samy Bengio · Jeff Dean -
2017 Talk: Neural Optimizer Search using Reinforcement Learning »
Irwan Bello · Barret Zoph · Vijay Vasudevan · Quoc Le -
2017 Talk: Large-Scale Evolution of Image Classifiers »
Esteban Real · Sherry Moore · Andrew Selle · Saurabh Saxena · Yutaka Leon Suematsu · Jie Tan · Quoc Le · Alexey Kurakin -
2017 Talk: Device Placement Optimization with Reinforcement Learning »
Azalia Mirhoseini · Hieu Pham · Quoc Le · benoit steiner · Mohammad Norouzi · Rasmus Larsen · Yuefeng Zhou · Naveen Kumar · Samy Bengio · Jeff Dean -
2017 Poster: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders »
Cinjon Resnick · Adam Roberts · Jesse Engel · Douglas Eck · Sander Dieleman · Karen Simonyan · Mohammad Norouzi -
2017 Talk: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders »
Cinjon Resnick · Adam Roberts · Jesse Engel · Douglas Eck · Sander Dieleman · Karen Simonyan · Mohammad Norouzi