Timezone: »
Poster
On Kinetic Optimal Probability Paths for Generative Models
Neta Shaul · Ricky T. Q. Chen · Maximilian Nickel · Matthew Le · Yaron Lipman
Recent successful generative models are trained by fitting a neural network to an a-priori defined tractable probability density path taking noise to training examples. In this paper we investigate the space of Gaussian probability paths, which includes diffusion paths as an instance, and look for an optimal member in some useful sense. In particular, minimizing the Kinetic Energy (KE) of a path is known to make particles' trajectories simple, hence easier to sample, and empirically improve performance in terms of likelihood of unseen data and sample generation quality. We investigate Kinetic Optimal (KO) Gaussian paths and offer the following observations: (i) We show the KE takes a simplified form on the space of Gaussian paths, where the data is incorporated only through a single, one dimensional scalar function, called the *data separation function*. (ii) We characterize the KO solutions with a one dimensional ODE. (iii) We approximate data-dependent KO paths by approximating the data separation function and minimizing the KE. (iv) We prove that the data separation function converges to $1$ in the general case of arbitrary normalized dataset consisting of $n$ samples in $d$ dimension as $n/\sqrt{d}\rightarrow 0$. A consequence of this result is that the Conditional Optimal Transport (Cond-OT) path becomes *kinetic optimal* as $n/\sqrt{d}\rightarrow 0$. We further support this theory with empirical experiments on ImageNet.
Author Information
Neta Shaul (Weizmann Institute of Science)
Ricky T. Q. Chen (Meta AI)
Maximilian Nickel (Facebook)
Matthew Le (Meta)
Yaron Lipman (Meta AI, WIS)
More from the Same Authors
-
2023 : Neural Optimal Transport with Lagrangian Costs »
Aram-Alexandre Pooladian · Carles Domingo i Enrich · Ricky T. Q. Chen · Brandon Amos -
2023 : On Convergence of Approximate Schr\"{o}dinger Bridge with Bounded Cost »
Wei Deng · Yu Chen · Tianjiao N Yang · Hengrong Du · Qi Feng · Ricky T. Q. Chen -
2023 : TaskMet: Task-Driven Metric Learning for Model Learning »
Dishank Bansal · Ricky T. Q. Chen · Mustafa Mukadam · Brandon Amos -
2023 : Assessing Neural Network Representations During Training Using Data Diffusion Spectra »
Danqi Liao · Chen Liu · Alexander Tong · Guillaume Huguet · Guy Wolf · Maximilian Nickel · Ian Adelstein · Smita Krishnaswamy -
2023 Oral: Equivariant Polynomials for Graph Neural Networks »
Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman -
2023 Poster: Equivariant Polynomials for Graph Neural Networks »
Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman -
2023 Poster: Hyperbolic Image-text Representations »
Karan Desai · Maximilian Nickel · Tanmay Rajpurohit · Justin Johnson · Ramakrishna Vedantam -
2023 Poster: Neural FIM for learning Fisher information metrics from point cloud data »
Oluwadamilola Fasina · Guillaume Huguet · Alexander Tong · Yanlei Zhang · Guy Wolf · Maximilian Nickel · Ian Adelstein · Smita Krishnaswamy -
2023 Poster: Multisample Flow Matching: Straightening Flows with Minibatch Couplings »
Aram-Alexandre Pooladian · Heli Ben-Hamu · Carles Domingo i Enrich · Brandon Amos · Yaron Lipman · Ricky T. Q. Chen -
2023 Poster: MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation »
Omer Bar-Tal · Lior Yariv · Yaron Lipman · Tali Dekel -
2022 Poster: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2022 Spotlight: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2021 Poster: Phase Transitions, Distance Functions, and Implicit Neural Representations »
Yaron Lipman -
2021 Spotlight: Phase Transitions, Distance Functions, and Implicit Neural Representations »
Yaron Lipman -
2021 Poster: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2021 Spotlight: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2020 Poster: Implicit Geometric Regularization for Learning Shapes »
Amos Gropp · Lior Yariv · Niv Haim · Matan Atzmon · Yaron Lipman -
2019 : Yaron Lipman, Weizmann Institute of Science »
Yaron Lipman -
2019 Poster: On the Universality of Invariant Networks »
Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman -
2019 Oral: On the Universality of Invariant Networks »
Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman