Timezone: »
We study the problem of multi-task learning under user-level differential privacy, in which n users contribute data to m tasks, each involving a subset of users. One important aspect of the problem, that can significantly impact quality, is the distribution skew among tasks. Tasks that have much fewer data samples than others are more susceptible to the noise added for privacy. It is natural to ask whether algorithms can adapt to this skew to improve the overall utility. We give a systematic analysis of the problem, by studying how to optimally allocate a user's privacy budget among tasks. We propose a generic algorithm, based on an adaptive reweighting of the empirical loss, and show that in the presence of distribution skew, this gives a quantifiable improvement of excess empirical risk. Experimental studies on recommendation problems that exhibit a long tail of small tasks, demonstrate that our methods significantly improve utility, achieving the state of the art on two standard benchmarks.
Author Information
Walid Krichene (Google Research)
Prateek Jain (Google Research)
Shuang Song (Google)
Mukund Sundararajan (Google Inc.)
Abhradeep Guha Thakurta (Google Deepmind)
Li Zhang (Google)
More from the Same Authors
-
2021 : Practical and Private (Deep) Learning without Sampling orShuffling »
Peter Kairouz · Hugh B McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 : Differentially Private Model Personalization »
Prateek Jain · J K Rush · Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2021 : The Flajolet-Martin Sketch Itself Preserves Differential Privacy: Private Counting with Minimal Space »
Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2021 : Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates »
Steve Chien · Prateek Jain · Walid Krichene · Steffen Rendle · Shuang Song · Abhradeep Guha Thakurta · Li Zhang -
2022 : DAFT: Distilling Adversarially Fine-tuned teachers for OOD Robustness »
Anshul Nasery · Sravanti Addepalli · Praneeth Netrapalli · Prateek Jain -
2023 Poster: Why Is Public Pretraining Necessary for Private Model Training? »
Arun Ganesh · Mahdi Haghifam · Milad Nasresfahani · Sewoong Oh · Thomas Steinke · Om Thakkar · Abhradeep Guha Thakurta · Lun Wang -
2023 Oral: Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning »
Christopher Choquette-Choo · Hugh B McMahan · J K Rush · Abhradeep Guha Thakurta -
2023 Oral: Inflow, Outflow, and Reciprocity in Machine Learning »
Mukund Sundararajan · Walid Krichene -
2023 Poster: Multi-User Reinforcement Learning with Low Rank Rewards »
Dheeraj Nagaraj · Suhas Kowshik · Naman Agarwal · Praneeth Netrapalli · Prateek Jain -
2023 Poster: Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning »
Christopher Choquette-Choo · Hugh B McMahan · J K Rush · Abhradeep Guha Thakurta -
2023 Poster: Inflow, Outflow, and Reciprocity in Machine Learning »
Mukund Sundararajan · Walid Krichene -
2022 Poster: Public Data-Assisted Mirror Descent for Private Model Training »
Ehsan Amid · Arun Ganesh · Rajiv Mathews · Swaroop Ramaswamy · Shuang Song · Thomas Steinke · Thomas Steinke · Vinith Suriyakumar · Om Thakkar · Abhradeep Guha Thakurta -
2022 Spotlight: Public Data-Assisted Mirror Descent for Private Model Training »
Ehsan Amid · Arun Ganesh · Rajiv Mathews · Swaroop Ramaswamy · Shuang Song · Thomas Steinke · Thomas Steinke · Vinith Suriyakumar · Om Thakkar · Abhradeep Guha Thakurta -
2021 : [05:00 - 05:45 PM UTC] Invited Talk 4: Analysis Not Explainability »
Mukund Sundararajan -
2021 Poster: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 Poster: Oneshot Differentially Private Top-k Selection »
Gang Qiao · Weijie Su · Li Zhang -
2021 Spotlight: Oneshot Differentially Private Top-k Selection »
Gang Qiao · Weijie Su · Li Zhang -
2021 Spotlight: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 Poster: Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates »
Steve Chien · Prateek Jain · Walid Krichene · Steffen Rendle · Shuang Song · Abhradeep Guha Thakurta · Li Zhang -
2021 Oral: Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates »
Steve Chien · Prateek Jain · Walid Krichene · Steffen Rendle · Shuang Song · Abhradeep Guha Thakurta · Li Zhang -
2021 Poster: Optimal regret algorithm for Pseudo-1d Bandit Convex Optimization »
Aadirupa Saha · Nagarajan Natarajan · Praneeth Netrapalli · Prateek Jain -
2021 Spotlight: Optimal regret algorithm for Pseudo-1d Bandit Convex Optimization »
Aadirupa Saha · Nagarajan Natarajan · Praneeth Netrapalli · Prateek Jain -
2020 Poster: The Shapley Taylor Interaction Index »
Mukund Sundararajan · Kedar Dhamdhere · Ashish Agarwal -
2020 Poster: The Many Shapley Values for Model Explanation »
Mukund Sundararajan · Amir Najmi -
2017 Poster: Axiomatic Attribution for Deep Networks »
Mukund Sundararajan · Ankur Taly · Qiqi Yan -
2017 Talk: Axiomatic Attribution for Deep Networks »
Mukund Sundararajan · Ankur Taly · Qiqi Yan