Timezone: »
We consider the prediction of the Hamiltonian matrix, which finds use in quantum chemistry and condensed matter physics. Efficiency and equivariance are two important, but conflicting factors. In this work, we propose a SE(3)-equivariant network, named QHNet, that achieves efficiency and equivariance. Our key advance lies at the innovative design of QHNet architecture, which not only obeys the underlying symmetries, but also enables the reduction of number of tensor products by 92%. In addition, QHNet prevents the exponential growth of channel dimension when more atom types are involved. We perform experiments on MD17 datasets, including four molecular systems. Experimental results show that our QHNet can achieve comparable performance to the state of the art methods at a significantly faster speed. Besides, our QHNet consumes 50% less memory due to its streamlined architecture. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).
Author Information
Haiyang Yu (Texas A&M University)
Zhao Xu (Texas A&M University)
Xiaofeng Qian (Texas A&M University)
## Research Areas * Computational Materials Science * First-Principles Electronic Structure Theory * Materials Discovery and Design * AI for Science * Machine Learning for Materials Science
Xiaoning Qian (Texas A&M University)
Shuiwang Ji (Texas A&M University)
More from the Same Authors
-
2023 : Reinstating Continuous Climate Patterns From Small and Discretized Data »
Xihaier Luo · Xiaoning Qian · Nathan Urban · Byung-Jun Yoon -
2023 : A new perspective on building efficient and expressive 3D equivariant graph neural networks »
weitao du · Yuanqi Du · Limei Wang · Dieqiao Feng · Guifeng Wang · Shuiwang Ji · Carla Gomes · Zhiming Ma -
2023 Poster: Group Equivariant Fourier Neural Operators for Partial Differential Equations »
Jacob Helwig · Xuan Zhang · Cong Fu · Jerry Kurtin · Stephan Wojtowytsch · Shuiwang Ji -
2023 Poster: Graph Mixup with Soft Alignments »
Hongyi Ling · Zhimeng Jiang · Meng Liu · Shuiwang Ji · Na Zou -
2023 Poster: Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction »
Yuchao Lin · Keqiang Yan · Youzhi Luo · Yi Liu · Xiaoning Qian · Shuiwang Ji -
2022 Poster: Generating 3D Molecules for Target Protein Binding »
Meng Liu · Youzhi Luo · Kanji Uchino · Koji Maruhashi · Shuiwang Ji -
2022 Poster: GraphFM: Improving Large-Scale GNN Training via Feature Momentum »
Haiyang Yu · Limei Wang · Bokun Wang · Meng Liu · Tianbao Yang · Shuiwang Ji -
2022 Poster: VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian Novelty »
Randy Ardywibowo · Zepeng Huo · Zhangyang “Atlas” Wang · Bobak Mortazavi · Shuai Huang · Xiaoning Qian -
2022 Spotlight: GraphFM: Improving Large-Scale GNN Training via Feature Momentum »
Haiyang Yu · Limei Wang · Bokun Wang · Meng Liu · Tianbao Yang · Shuiwang Ji -
2022 Oral: Generating 3D Molecules for Target Protein Binding »
Meng Liu · Youzhi Luo · Kanji Uchino · Koji Maruhashi · Shuiwang Ji -
2022 Spotlight: VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian Novelty »
Randy Ardywibowo · Zepeng Huo · Zhangyang “Atlas” Wang · Bobak Mortazavi · Shuai Huang · Xiaoning Qian -
2022 Poster: Self-Supervised Representation Learning via Latent Graph Prediction »
Yaochen Xie · Zhao Xu · Shuiwang Ji -
2022 Spotlight: Self-Supervised Representation Learning via Latent Graph Prediction »
Yaochen Xie · Zhao Xu · Shuiwang Ji -
2021 Poster: On Explainability of Graph Neural Networks via Subgraph Explorations »
Hao Yuan · Haiyang Yu · Jie Wang · Kang Li · Shuiwang Ji -
2021 Spotlight: On Explainability of Graph Neural Networks via Subgraph Explorations »
Hao Yuan · Haiyang Yu · Jie Wang · Kang Li · Shuiwang Ji -
2021 Poster: GraphDF: A Discrete Flow Model for Molecular Graph Generation »
Youzhi Luo · Keqiang Yan · Shuiwang Ji -
2021 Spotlight: GraphDF: A Discrete Flow Model for Molecular Graph Generation »
Youzhi Luo · Keqiang Yan · Shuiwang Ji -
2020 Poster: Bayesian Graph Neural Networks with Adaptive Connection Sampling »
Arman Hasanzadeh · Ehsan Hajiramezanali · Shahin Boluki · Mingyuan Zhou · Nick Duffield · Krishna Narayanan · Xiaoning Qian -
2020 Poster: NADS: Neural Architecture Distribution Search for Uncertainty Awareness »
Randy Ardywibowo · Shahin Boluki · Xinyu Gong · Zhangyang “Atlas” Wang · Xiaoning Qian