Timezone: »
Simulation-free methods for training continuous-time generative models construct probability paths that go between noise distributions and individual data samples. Recent works, such as Flow Matching, derived paths that are optimal for each data sample. However, these algorithms rely on independent data and noise samples, and do not exploit underlying structure in the data distribution for constructing probability paths. We propose Multisample Flow Matching, a more general framework that uses non-trivial couplings between data and noise samples while satisfying the correct marginal constraints. At small overhead costs, this generalization allows us to (i) reduce gradient variance during training, (ii) obtain straighter flows for the learned vector field, which allows us to generate high-quality samples using fewer function evaluations, and (iii) obtain transport maps with low cost in high dimensions, which has applications beyond generative modeling. Importantly, we do so in a completely simulation-free manner with a simple minimization objective. We show that our proposed methods improve sample consistency on downsampled ImageNet data sets, and lead to better low-cost sample generation.
Author Information
Aram-Alexandre Pooladian (New York University)
Heli Ben-Hamu (Weizmann Institute of Science)
Carles Domingo i Enrich (New York University)
Brandon Amos (Meta)
Yaron Lipman (Meta AI, WIS)
Ricky T. Q. Chen (Meta AI)
More from the Same Authors
-
2021 : Neural Fixed-Point Acceleration for Convex Optimization »
Shobha Venkataraman · Brandon Amos -
2023 : Neural Optimal Transport with Lagrangian Costs »
Aram-Alexandre Pooladian · Carles Domingo i Enrich · Ricky T. Q. Chen · Brandon Amos -
2023 : On Convergence of Approximate Schr\"{o}dinger Bridge with Bounded Cost »
Wei Deng · Yu Chen · Tianjiao N Yang · Hengrong Du · Qi Feng · Ricky T. Q. Chen -
2023 : Koopman Constrained Policy Optimization: A Koopman operator theoretic method for differentiable optimal control in robotics »
Matthew Retchin · Brandon Amos · Steven Brunton · Shuran Song -
2023 : TaskMet: Task-Driven Metric Learning for Model Learning »
Dishank Bansal · Ricky T. Q. Chen · Mustafa Mukadam · Brandon Amos -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : On optimal control and machine learning »
Brandon Amos -
2023 Oral: Equivariant Polynomials for Graph Neural Networks »
Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman -
2023 Poster: Equivariant Polynomials for Graph Neural Networks »
Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman -
2023 Poster: Meta Optimal Transport »
Brandon Amos · Giulia Luise · samuel cohen · Ievgen Redko -
2023 Poster: On Kinetic Optimal Probability Paths for Generative Models »
Neta Shaul · Ricky T. Q. Chen · Maximilian Nickel · Matthew Le · Yaron Lipman -
2023 Poster: MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation »
Omer Bar-Tal · Lior Yariv · Yaron Lipman · Tali Dekel -
2023 Poster: Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories »
Qinqing Zheng · Mikael Henaff · Brandon Amos · Aditya Grover -
2023 Poster: Minimax estimation of discontinuous optimal transport maps: The semi-discrete case »
Aram-Alexandre Pooladian · Vincent Divol · Jonathan Niles-Weed -
2022 : Differentiable optimization for control and reinforcement learning »
Brandon Amos -
2022 Poster: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2022 Spotlight: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2021 Poster: Phase Transitions, Distance Functions, and Implicit Neural Representations »
Yaron Lipman -
2021 Spotlight: Phase Transitions, Distance Functions, and Implicit Neural Representations »
Yaron Lipman -
2021 Poster: On Energy-Based Models with Overparametrized Shallow Neural Networks »
Carles Domingo-Enrich · Alberto Bietti · Eric Vanden-Eijnden · Joan Bruna -
2021 Oral: On Energy-Based Models with Overparametrized Shallow Neural Networks »
Carles Domingo-Enrich · Alberto Bietti · Eric Vanden-Eijnden · Joan Bruna -
2021 Poster: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints »
Anselm Paulus · Michal Rolinek · Vit Musil · Brandon Amos · Georg Martius -
2021 Spotlight: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints »
Anselm Paulus · Michal Rolinek · Vit Musil · Brandon Amos · Georg Martius -
2021 Poster: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2021 Spotlight: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2020 Poster: Extra-gradient with player sampling for faster convergence in n-player games »
Samy Jelassi · Carles Domingo-Enrich · Damien Scieur · Arthur Mensch · Joan Bruna -
2020 Poster: Implicit Geometric Regularization for Learning Shapes »
Amos Gropp · Lior Yariv · Niv Haim · Matan Atzmon · Yaron Lipman -
2020 Poster: The Differentiable Cross-Entropy Method »
Brandon Amos · Denis Yarats -
2019 : Yaron Lipman, Weizmann Institute of Science »
Yaron Lipman -
2019 Poster: On the Universality of Invariant Networks »
Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman -
2019 Oral: On the Universality of Invariant Networks »
Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman