Timezone: »
Poster
User-level Private Stochastic Convex Optimization with Optimal Rates
Raef Bassily · Ziteng Sun
We study the problem of differentially private (DP) stochastic convex optimization (SCO) under the notion of user-level differential privacy. In this problem, there are $n$ users, each contributing $m>1$ samples to the input dataset of the private SCO algorithm, and the notion of indistinguishability embedded in DP is w.r.t. replacing the entire local dataset of any given user. Under smoothness conditions of the loss, we establish the optimal rates for user-level DP-SCO in both the central and local models of DP. In particular, we show, roughly, that the optimal rate is $\frac{1}{\sqrt{nm}}+\frac{\sqrt{d}}{\varepsilon n \sqrt{m}}$ in the central setting and is $\frac{\sqrt{d}}{\varepsilon \sqrt{nm}}$ in the local setting, where $d$ is the dimensionality of the problem and $\varepsilon$ is the privacy parameter. Our algorithms combine new user-level DP mean estimation techniques with carefully designed first-order stochastic optimization methods. For the central DP setting, our optimal rate improves over the rate attained for the same setting in Levy et al. (2021) by $\sqrt{d}$ factor. One of the main ingredients that enabled such an improvement is a novel application of the generalization properties of DP in the context of multi-pass stochastic gradient methods.
Author Information
Raef Bassily (Ohio State University)
Ziteng Sun (Google Research)
More from the Same Authors
-
2021 : Non-Euclidean Differentially Private Stochastic Convex Optimization »
Raef Bassily · Cristobal Guzman · Anupama Nandi -
2021 : Learning with User-Level Privacy »
Daniel A Levy · Ziteng Sun · Kareem Amin · Satyen Kale · Alex Kulesza · Mehryar Mohri · Ananda Theertha Suresh -
2023 : Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 : SpecTr: Fast Speculative Decoding via Optimal Transport »
Ziteng Sun · Ananda Suresh · Jae Ro · Ahmad Beirami · Himanshu Jain · Felix Xinnan Yu · Michael Riley · Sanjiv Kumar -
2023 Poster: Subset-Based Instance Optimality in Private Estimation »
Travis Dick · Alex Kulesza · Ziteng Sun · Ananda Suresh -
2023 Poster: Faster Rates of Convergence to Stationary Points in Differentially Private Optimization »
Raman Arora · Raef Bassily · Tomás González · Cristobal Guzman · Michael Menart · Enayat Ullah -
2023 Poster: Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2022 Poster: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2022 Spotlight: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2021 Poster: Robust Testing and Estimation under Manipulation Attacks »
Jayadev Acharya · Ziteng Sun · Huanyu Zhang -
2021 Spotlight: Robust Testing and Estimation under Manipulation Attacks »
Jayadev Acharya · Ziteng Sun · Huanyu Zhang -
2020 Poster: Context Aware Local Differential Privacy »
Jayadev Acharya · Kallista Bonawitz · Peter Kairouz · Daniel Ramage · Ziteng Sun -
2019 Poster: Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters »
Jayadev Acharya · Ziteng Sun -
2019 Oral: Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters »
Jayadev Acharya · Ziteng Sun -
2018 Poster: INSPECTRE: Privately Estimating the Unseen »
Jayadev Acharya · Gautam Kamath · Ziteng Sun · Huanyu Zhang -
2018 Poster: The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized Learning »
Siyuan Ma · Raef Bassily · Mikhail Belkin -
2018 Oral: The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized Learning »
Siyuan Ma · Raef Bassily · Mikhail Belkin -
2018 Oral: INSPECTRE: Privately Estimating the Unseen »
Jayadev Acharya · Gautam Kamath · Ziteng Sun · Huanyu Zhang