Timezone: »
Poster
$H$-Consistency Bounds for Pairwise Misranking Loss Surrogates
Anqi Mao · Mehryar Mohri · Yutao Zhong
We present a detailed study of *$H$-consistency bounds* for score-based ranking. These are upper bounds on the target loss estimation error of a predictor in a hypothesis set $H$, expressed in terms of the surrogate loss estimation error of that predictor. We will show that both in the *general pairwise ranking* scenario and in the *bipartite ranking* scenario, there are no meaningful $H$-consistency bounds for most hypothesis sets used in practice including the family of linear models and that of the neural networks, which satisfy the equicontinuous property with respect to the input. To come up with ranking surrogate losses with theoretical guarantees, we show that a natural solution consists of resorting to a *pairwise abstention loss* in the general pairwise ranking scenario, and similarly, a *bipartite abstention loss* in the bipartite ranking scenario, to abstain from making predictions at some limited cost $c$. For surrogate losses of these abstention loss functions, we give a series of $H$-consistency bounds for both the family of linear functions and that of neural networks with one hidden-layer. Our experimental results illustrate the effectiveness of ranking with abstention.
Author Information
Anqi Mao (Courant Institute of Mathematical Sciences, NYU)
Mehryar Mohri (Google Research and Courant Institute of Mathematical Sciences)
Yutao Zhong (Courant Institute of Mathematical Sciences, NYU)
More from the Same Authors
-
2021 : Learning with User-Level Privacy »
Daniel A Levy · Ziteng Sun · Kareem Amin · Satyen Kale · Alex Kulesza · Mehryar Mohri · Ananda Theertha Suresh -
2023 : Ranking with Abstention »
Anqi Mao · Mehryar Mohri · Yutao Zhong -
2023 Poster: Reinforcement Learning Can Be More Efficient with Multiple Rewards »
Christoph Dann · Yishay Mansour · Mehryar Mohri -
2023 Poster: Cross-Entropy Loss Functions: Theoretical Analysis and Applications »
Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Poster: Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation »
Chris Dann · Yishay Mansour · Mehryar Mohri · Ayush Sekhari · Karthik Sridharan -
2022 Spotlight: Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation »
Chris Dann · Yishay Mansour · Mehryar Mohri · Ayush Sekhari · Karthik Sridharan -
2022 Poster: H-Consistency Bounds for Surrogate Loss Minimizers »
Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Oral: H-Consistency Bounds for Surrogate Loss Minimizers »
Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2021 Spotlight: A Discriminative Technique for Multiple-Source Adaptation »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh · Ningshan Zhang -
2021 Poster: A Discriminative Technique for Multiple-Source Adaptation »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh · Ningshan Zhang -
2021 Spotlight: Relative Deviation Margin Bounds »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh -
2021 Poster: Relative Deviation Margin Bounds »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh -
2020 Poster: Adaptive Region-Based Active Learning »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Ningshan Zhang -
2020 Poster: Online Learning with Dependent Stochastic Feedback Graphs »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Ningshan Zhang -
2020 Poster: SCAFFOLD: Stochastic Controlled Averaging for Federated Learning »
Sai Praneeth Reddy Karimireddy · Satyen Kale · Mehryar Mohri · Sashank Jakkam Reddi · Sebastian Stich · Ananda Theertha Suresh -
2020 Poster: Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2020 Poster: FedBoost: A Communication-Efficient Algorithm for Federated Learning »
Jenny Hamer · Mehryar Mohri · Ananda Theertha Suresh -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel