Timezone: »
Fourier Neural Operators (FNOs) have proven to be an efficient and effective method for resolution-independent operator learning in a broad variety of application areas across scientific machine learning. A key reason for their success is their ability to accurately model long-range dependencies in spatio-temporal data by learning global convolutions in a computationally efficient manner. To this end, FNOs rely on the discrete Fourier transform (DFT), however, DFTs cause visual and spectral artifacts as well as pronounced dissipation when learning operators in spherical coordinates by incorrectly assuming flat geometry. To overcome this limitation, we generalize FNOs on the sphere, introducing Spherical FNOs (SFNOs) for learning operators on spherical geometries. We apply SFNOs to forecasting atmo- spheric dynamics, and demonstrate stable autoregressive rollouts for a year of simulated time (1,460 steps), while retaining physically plausible dynamics. The SFNO has important implications for machine learning-based simulation of climate dynamics that could eventually help accelerate our response to climate change.
Author Information
Boris Bonev (NVIDIA)
Thorsten Kurth (NVIDIA Corporation)
Thorsten Kurth works at NVIDIA on optimizing scientific codes for GPU based supercomputers. His main focus is on providing optimized deep learning applications for HPC systems. These include end-to-end optimizations such as input pipeline including IO tuning, distributed training and data visualization. Before he joined NVIDIA, Thorsten worked at NERSC with the application readiness team to deliver optimized codes for the NERSC HPC infrastructure. He was leading the Learning application category of the NERSC Exascale Science Application Program (NESAP), targeting at improving experimental and observational data analysis or simulation codes using machine learning and artificial intelligence methods. In 2018 he was awarded the Gordon Bell Prize for the first Deep Learning application which achieved more than 1 ExaOp peak performance on the OLCF Summit HPC system.
Christian Hundt (NVIDIA)
Jaideep Pathak (NVIDIA)
Maximilian Baust (Technische Universität München)
Karthik Kashinath (LBNL)
Anima Anandkumar (Caltech and NVIDIA)
Anima Anandkumar is a Bren Professor at Caltech and Director of ML Research at NVIDIA. She was previously a Principal Scientist at Amazon Web Services. She is passionate about designing principled AI algorithms and applying them to interdisciplinary domains. She has received several honors such as the IEEE fellowship, Alfred. P. Sloan Fellowship, NSF Career Award, Young investigator awards from DoD, Venturebeat’s “women in AI” award, NYTimes GoodTech award, and Faculty Fellowships from Microsoft, Google, Facebook, and Adobe. She is part of the World Economic Forum's Expert Network. She has appeared in the PBS Frontline documentary on the “Amazon empire” and has given keynotes in many forums such as the TEDx, KDD, ICLR, and ACM. Anima received her BTech from Indian Institute of Technology Madras, her PhD from Cornell University, and did her postdoctoral research at MIT and assistant professorship at University of California Irvine.
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Oral: Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere »
Fri. Jul 28th 02:04 -- 02:12 AM Room Meeting Room 316 A-C
More from the Same Authors
-
2021 : Auditing AI models for Verified Deployment under Semantic Specifications »
Homanga Bharadhwaj · De-An Huang · Chaowei Xiao · Anima Anandkumar · Animesh Garg -
2022 : Physics-Informed Neural Operator for Learning Partial Differential Equations »
Zongyi Li · Hongkai Zheng · Nikola Kovachki · David Jin · Haoxuan Chen · Burigede Liu · Kamyar Azizzadenesheli · Animashree Anandkumar -
2023 : Stochastic Linear Bandits with Unknown Safety Constraints and Local Feedback »
Nithin Varma · Sahin Lale · Anima Anandkumar -
2023 : LeanDojo: Theorem Proving with Retrieval-Augmented Language Models »
Kaiyu Yang · Aidan Swope · Alexander Gu · Rahul Chalamala · Shixing Yu · Saad Godil · Ryan Prenger · Animashree Anandkumar -
2023 : Incrementally-Computable Neural Networks: Efficient Inference for Dynamic Inputs »
Or Sharir · Anima Anandkumar -
2023 : Incremental Low-Rank Learning »
Jiawei Zhao · Yifei Zhang · Beidi Chen · Florian Schaefer · Anima Anandkumar -
2023 : Speeding up Fourier Neural Operators via Mixed Precision »
Renbo Tu · Colin White · Jean Kossaifi · Kamyar Azizzadenesheli · Gennady Pekhimenko · Anima Anandkumar -
2023 : AutoBiasTest: Controllable Test Sentence Generation for Open-Ended Social Bias Testing in Language Models at Scale »
Rafal Kocielnik · Shrimai Prabhumoye · Vivian Zhang · R. Alvarez · Anima Anandkumar -
2023 Workshop: New Frontiers in Learning, Control, and Dynamical Systems »
Valentin De Bortoli · Charlotte Bunne · Guan-Horng Liu · Tianrong Chen · Maxim Raginsky · Pratik Chaudhari · Melanie Zeilinger · Animashree Anandkumar -
2023 Poster: VIMA: Robot Manipulation with Multimodal Prompts »
Yunfan Jiang · Agrim Gupta · Zichen Zhang · Guanzhi Wang · Yongqiang Dou · Yanjun Chen · Li Fei-Fei · Anima Anandkumar · Yuke Zhu · Jim Fan -
2023 Poster: Fast Sampling of Diffusion Models via Operator Learning »
Hongkai Zheng · Weili Nie · Arash Vahdat · Kamyar Azizzadenesheli · Anima Anandkumar -
2023 Poster: I$^2$SB: Image-to-Image Schrödinger Bridge »
Guan-Horng Liu · Arash Vahdat · De-An Huang · Evangelos Theodorou · Weili Nie · Anima Anandkumar -
2022 Poster: Diffusion Models for Adversarial Purification »
Weili Nie · Brandon Guo · Yujia Huang · Chaowei Xiao · Arash Vahdat · Animashree Anandkumar -
2022 Spotlight: Diffusion Models for Adversarial Purification »
Weili Nie · Brandon Guo · Yujia Huang · Chaowei Xiao · Arash Vahdat · Animashree Anandkumar -
2022 Poster: Langevin Monte Carlo for Contextual Bandits »
Pan Xu · Hongkai Zheng · Eric Mazumdar · Kamyar Azizzadenesheli · Animashree Anandkumar -
2022 Poster: Understanding The Robustness in Vision Transformers »
Zhou Daquan · Zhiding Yu · Enze Xie · Chaowei Xiao · Animashree Anandkumar · Jiashi Feng · Jose M. Alvarez -
2022 Spotlight: Understanding The Robustness in Vision Transformers »
Zhou Daquan · Zhiding Yu · Enze Xie · Chaowei Xiao · Animashree Anandkumar · Jiashi Feng · Jose M. Alvarez -
2022 Spotlight: Langevin Monte Carlo for Contextual Bandits »
Pan Xu · Hongkai Zheng · Eric Mazumdar · Kamyar Azizzadenesheli · Animashree Anandkumar -
2021 : Invited Speaker: Animashree Anandkumar: Stability-aware reinforcement learning in dynamical systems »
Animashree Anandkumar -
2021 Workshop: Workshop on Socially Responsible Machine Learning »
Chaowei Xiao · Animashree Anandkumar · Mingyan Liu · Dawn Song · Raquel Urtasun · Jieyu Zhao · Xueru Zhang · Cihang Xie · Xinyun Chen · Bo Li -
2021 Poster: Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection »
Nadine Chang · Zhiding Yu · Yu-Xiong Wang · Anima Anandkumar · Sanja Fidler · Jose Alvarez -
2021 Spotlight: Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection »
Nadine Chang · Zhiding Yu · Yu-Xiong Wang · Anima Anandkumar · Sanja Fidler · Jose Alvarez -
2021 Poster: SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies »
Jim Fan · Guanzhi Wang · De-An Huang · Zhiding Yu · Li Fei-Fei · Yuke Zhu · Anima Anandkumar -
2021 Spotlight: SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies »
Jim Fan · Guanzhi Wang · De-An Huang · Zhiding Yu · Li Fei-Fei · Yuke Zhu · Anima Anandkumar -
2021 Poster: Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning »
Anuj Mahajan · Mikayel Samvelyan · Lei Mao · Viktor Makoviychuk · Animesh Garg · Jean Kossaifi · Shimon Whiteson · Yuke Zhu · Anima Anandkumar -
2021 Spotlight: Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning »
Anuj Mahajan · Mikayel Samvelyan · Lei Mao · Viktor Makoviychuk · Animesh Garg · Jean Kossaifi · Shimon Whiteson · Yuke Zhu · Anima Anandkumar -
2020 : Q&A: Anima Anandakumar »
Animashree Anandkumar · Jessica Forde -
2020 : Invited Talks: Anima Anandakumar »
Animashree Anandkumar -
2020 Poster: Implicit competitive regularization in GANs »
Florian Schäfer · Hongkai Zheng · Anima Anandkumar -
2020 Poster: Semi-Supervised StyleGAN for Disentanglement Learning »
Weili Nie · Tero Karras · Animesh Garg · Shoubhik Debnath · Anjul Patney · Ankit Patel · Anima Anandkumar -
2020 Poster: Automated Synthetic-to-Real Generalization »
Wuyang Chen · Zhiding Yu · Zhangyang “Atlas” Wang · Anima Anandkumar -
2020 Poster: Angular Visual Hardness »
Beidi Chen · Weiyang Liu · Zhiding Yu · Jan Kautz · Anshumali Shrivastava · Animesh Garg · Anima Anandkumar -
2020 : Mentoring Panel: Doina Precup, Deborah Raji, Anima Anandkumar, Angjoo Kanazawa and Sinead Williamson (moderator). »
Doina Precup · Inioluwa Raji · Angjoo Kanazawa · Sinead A Williamson · Animashree Anandkumar -
2019 : Invited Talk - Anima Anandkumar: Stein’s method for understanding optimization in neural networks. »
Anima Anandkumar -
2019 Poster: Open Vocabulary Learning on Source Code with a Graph-Structured Cache »
Milan Cvitkovic · Badal Singh · Anima Anandkumar -
2019 Oral: Open Vocabulary Learning on Source Code with a Graph-Structured Cache »
Milan Cvitkovic · Badal Singh · Anima Anandkumar -
2018 Poster: StrassenNets: Deep Learning with a Multiplication Budget »
Michael Tschannen · Aran Khanna · Animashree Anandkumar -
2018 Poster: Born Again Neural Networks »
Tommaso Furlanello · Zachary Lipton · Michael Tschannen · Laurent Itti · Anima Anandkumar -
2018 Oral: Born Again Neural Networks »
Tommaso Furlanello · Zachary Lipton · Michael Tschannen · Laurent Itti · Anima Anandkumar -
2018 Oral: StrassenNets: Deep Learning with a Multiplication Budget »
Michael Tschannen · Aran Khanna · Animashree Anandkumar -
2018 Poster: signSGD: Compressed Optimisation for Non-Convex Problems »
Jeremy Bernstein · Yu-Xiang Wang · Kamyar Azizzadenesheli · Anima Anandkumar -
2018 Oral: signSGD: Compressed Optimisation for Non-Convex Problems »
Jeremy Bernstein · Yu-Xiang Wang · Kamyar Azizzadenesheli · Anima Anandkumar