Timezone: »

 
Poster
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Alexander Immer · Tycho van der Ouderaa · Mark van der Wilk · Gunnar Ratsch · Bernhard Schölkopf

Thu Jul 27 01:30 PM -- 03:00 PM (PDT) @ Exhibit Hall 1 #212

Selecting hyperparameters in deep learning greatly impacts its effectiveness but requires manual effort and expertise. Recent works show that Bayesian model selection with Laplace approximations can allow to optimize such hyperparameters just like standard neural network parameters using gradients and on the training data. However, estimating a single hyperparameter gradient requires a pass through the entire dataset, limiting the scalability of such algorithms. In this work, we overcome this issue by introducing lower bounds to the linearized Laplace approximation of the marginal likelihood. In contrast to previous estimators, these bounds are amenable to stochastic-gradient-based optimization and allow to trade off estimation accuracy against computational complexity. We derive them using the function-space form of the linearized Laplace, which can be estimated using the neural tangent kernel. Experimentally, we show that the estimators can significantly accelerate gradient-based hyperparameter optimization.

Author Information

Alexander Immer (ETH-Z, MPI-IS)
Tycho van der Ouderaa (Imperial College London)
Mark van der Wilk (Imperial College London)
Gunnar Ratsch (ETH Zurich)
Bernhard Schölkopf (MPI for Intelligent Systems Tübingen, Germany)

Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.

More from the Same Authors