Timezone: »
Poster
Task-Specific Skill Localization in Fine-tuned Language Models
Abhishek Panigrahi · Nikunj Saunshi · Haoyu Zhao · Sanjeev Arora
Pre-trained language models can be fine-tuned to solve diverse NLP tasks, including in few-shot settings. Thus fine-tuning allows the model to quickly pick up task-specific "skills," but there has been limited study of *where* these newly-learnt skills reside inside the massive model. This paper introduces the term *skill localization* for this problem and proposes a solution. Given the downstream task and a model fine-tuned on that task, a simple optimization is used to identify a very small subset of parameters ($\sim$0.01% of model parameters) responsible for (>95%) of the model's performance, in the sense that *grafting* the fine-tuned values for just this tiny subset onto the pre-trained model gives performance almost as well as the fine-tuned model. While reminiscent of recent works on parameter-efficient fine-tuning, the novel aspects here are that: (i) No further retraining is needed on the subset (unlike, say, with lottery tickets). (ii) Notable improvements are seen over vanilla fine-tuning with respect to calibration of predictions in-distribution (40-90% error reduction) as well as quality of predictions out-of-distribution (OOD). In models trained on multiple tasks, a stronger notion of skill localization is observed, where the sparse regions corresponding to different tasks are almost disjoint, and their overlap (when it happens) is a proxy for task similarity. Experiments suggest that localization via grafting can assist certain forms continual learning.
Author Information
Abhishek Panigrahi (Princeton University)
Nikunj Saunshi (Google Research)
Haoyu Zhao (Princeton University)
Sanjeev Arora (Princeton University)
More from the Same Authors
-
2023 : Fine-Tuning Language Models with Just Forward Passes »
Sadhika Malladi · Tianyu Gao · Eshaan Nichani · Jason Lee · Danqi Chen · Sanjeev Arora -
2023 : 🎤 Fine-Tuning Language Models with Just Forward Passes »
Sadhika Malladi · Tianyu Gao · Eshaan Nichani · Alex Damian · Jason Lee · Danqi Chen · Sanjeev Arora -
2023 : High-dimensional Optimization in the Age of ChatGPT, Sanjeev Arora »
Sanjeev Arora -
2023 Poster: A Kernel-Based View of Language Model Fine-Tuning »
Sadhika Malladi · Alexander Wettig · Dingli Yu · Danqi Chen · Sanjeev Arora -
2022 : On the SDEs and Scaling Rules for Adaptive Gradient Algorithms »
Sadhika Malladi · Kaifeng Lyu · Abhishek Panigrahi · Sanjeev Arora -
2022 : Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence toMirror Descent »
Zhiyuan Li · Tianhao Wang · Jason Lee · Sanjeev Arora -
2022 Poster: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Spotlight: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Poster: Understanding Gradient Descent on the Edge of Stability in Deep Learning »
Sanjeev Arora · Zhiyuan Li · Abhishek Panigrahi -
2022 Spotlight: Understanding Gradient Descent on the Edge of Stability in Deep Learning »
Sanjeev Arora · Zhiyuan Li · Abhishek Panigrahi -
2020 Poster: Provable Representation Learning for Imitation Learning via Bi-level Optimization »
Sanjeev Arora · Simon Du · Sham Kakade · Yuping Luo · Nikunj Umesh Saunshi -
2020 Poster: InstaHide: Instance-hiding Schemes for Private Distributed Learning »
Yangsibo Huang · Zhao Song · Kai Li · Sanjeev Arora -
2020 Poster: A Sample Complexity Separation between Non-Convex and Convex Meta-Learning »
Nikunj Umesh Saunshi · Yi Zhang · Mikhail Khodak · Sanjeev Arora -
2020 Poster: Combinatorial Pure Exploration for Dueling Bandit »
Wei Chen · Yihan Du · Longbo Huang · Haoyu Zhao -
2019 : Is Optimization a sufficient language to understand Deep Learning? »
Sanjeev Arora -
2019 Poster: A Theoretical Analysis of Contrastive Unsupervised Representation Learning »
Nikunj Umesh Saunshi · Orestis Plevrakis · Sanjeev Arora · Mikhail Khodak · Hrishikesh Khandeparkar -
2019 Oral: A Theoretical Analysis of Contrastive Unsupervised Representation Learning »
Nikunj Umesh Saunshi · Orestis Plevrakis · Sanjeev Arora · Mikhail Khodak · Hrishikesh Khandeparkar -
2019 Poster: Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Ruosong Wang -
2019 Oral: Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Ruosong Wang -
2018 Poster: Stronger Generalization Bounds for Deep Nets via a Compression Approach »
Sanjeev Arora · Rong Ge · Behnam Neyshabur · Yi Zhang -
2018 Oral: Stronger Generalization Bounds for Deep Nets via a Compression Approach »
Sanjeev Arora · Rong Ge · Behnam Neyshabur · Yi Zhang -
2018 Poster: On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization »
Sanjeev Arora · Nadav Cohen · Elad Hazan -
2018 Oral: On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization »
Sanjeev Arora · Nadav Cohen · Elad Hazan -
2018 Tutorial: Toward Theoretical Understanding of Deep Learning »
Sanjeev Arora -
2017 Poster: Generalization and Equilibrium in Generative Adversarial Nets (GANs) »
Sanjeev Arora · Rong Ge · Yingyu Liang · Tengyu Ma · Yi Zhang -
2017 Talk: Generalization and Equilibrium in Generative Adversarial Nets (GANs) »
Sanjeev Arora · Rong Ge · Yingyu Liang · Tengyu Ma · Yi Zhang