Timezone: »
Poster
Subset-Based Instance Optimality in Private Estimation
Travis Dick · Alex Kulesza · Ziteng Sun · Ananda Suresh
We propose a new definition of instance optimality for differentially private estimation algorithms. Our definition requires an optimal algorithm to compete, simultaneously for every dataset $D$, with the best private benchmark algorithm that (a) knows $D$ in advance and (b) is evaluated by its worst-case performance on large subsets of $D$. That is, the benchmark algorithm need not perform well when potentially extreme points are added to $D$; it only has to handle the removal of a small number of real data points that already exist. This makes our benchmark significantly stronger than those proposed in prior work. We nevertheless show, for real-valued datasets, how to construct private algorithms that achieve our notion of instance optimality when estimating a broad class of dataset properties, including means, quantiles, and $\ell_p$-norm minimizers. For means in particular, we provide a detailed analysis and show that our algorithm simultaneously matches or exceeds the asymptotic performance of existing algorithms under a range of distributional assumptions.
Author Information
Travis Dick (Google)
Alex Kulesza (Google)
Ziteng Sun (Google Research)
Ananda Suresh (Google Research)
More from the Same Authors
-
2021 : Learning with User-Level Privacy »
Daniel A Levy · Ziteng Sun · Kareem Amin · Satyen Kale · Alex Kulesza · Mehryar Mohri · Ananda Theertha Suresh -
2021 : Differentially Private Quantiles »
Jennifer Gillenwater · Matthew Joseph · Alex Kulesza -
2023 : Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 : Learning-augmented private algorithms for multiple quantile release »
Mikhail Khodak · Kareem Amin · Travis Dick · Sergei Vassilvitskii -
2023 : SpecTr: Fast Speculative Decoding via Optimal Transport »
Ziteng Sun · Ananda Suresh · Jae Ro · Ahmad Beirami · Himanshu Jain · Felix Xinnan Yu · Michael Riley · Sanjiv Kumar -
2023 Poster: Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 Poster: Learning-augmented private algorithms for multiple quantile release »
Mikhail Khodak · Kareem Amin · Travis Dick · Sergei Vassilvitskii -
2023 Poster: Algorithms for bounding contribution for histogram estimation under user-level privacy »
Yuhan Liu · Ananda Suresh · Wennan Zhu · Peter Kairouz · Marco Gruteser -
2023 Poster: User-level Private Stochastic Convex Optimization with Optimal Rates »
Raef Bassily · Ziteng Sun -
2022 Poster: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Spotlight: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Poster: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2022 Spotlight: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2021 Poster: Differentially Private Quantiles »
Jennifer Gillenwater · Matthew Joseph · Alex Kulesza -
2021 Poster: Robust Testing and Estimation under Manipulation Attacks »
Jayadev Acharya · Ziteng Sun · Huanyu Zhang -
2021 Spotlight: Differentially Private Quantiles »
Jennifer Gillenwater · Matthew Joseph · Alex Kulesza -
2021 Spotlight: Robust Testing and Estimation under Manipulation Attacks »
Jayadev Acharya · Ziteng Sun · Huanyu Zhang -
2020 Poster: Context Aware Local Differential Privacy »
Jayadev Acharya · Kallista Bonawitz · Peter Kairouz · Daniel Ramage · Ziteng Sun -
2019 Workshop: Negative Dependence: Theory and Applications in Machine Learning »
Mike Gartrell · Jennifer Gillenwater · Alex Kulesza · Zelda Mariet -
2019 Poster: Agnostic Federated Learning »
Mehryar Mohri · Gary Sivek · Ananda Suresh -
2019 Poster: Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy »
Kareem Amin · Alex Kulesza · andres munoz · Sergei Vassilvitskii -
2019 Oral: Agnostic Federated Learning »
Mehryar Mohri · Gary Sivek · Ananda Suresh -
2019 Oral: Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy »
Kareem Amin · Alex Kulesza · andres munoz · Sergei Vassilvitskii -
2019 Poster: A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes »
Jennifer Gillenwater · Alex Kulesza · Zelda Mariet · Sergei Vassilvitskii -
2019 Oral: A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes »
Jennifer Gillenwater · Alex Kulesza · Zelda Mariet · Sergei Vassilvitskii -
2019 Poster: Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters »
Jayadev Acharya · Ziteng Sun -
2019 Oral: Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters »
Jayadev Acharya · Ziteng Sun -
2018 Poster: INSPECTRE: Privately Estimating the Unseen »
Jayadev Acharya · Gautam Kamath · Ziteng Sun · Huanyu Zhang -
2018 Oral: INSPECTRE: Privately Estimating the Unseen »
Jayadev Acharya · Gautam Kamath · Ziteng Sun · Huanyu Zhang -
2017 Poster: A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky · Ananda Suresh -
2017 Talk: A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky · Ananda Suresh