Timezone: »
While diffusion models excel at generating high-quality samples, their latent variables typically lack semantic meaning and are not suitable for representation learning. Here, we propose InfoDiffusion, an algorithm that augments diffusion models with low-dimensional latent variables that capture high-level factors of variation in the data. InfoDiffusion relies on a learning objective regularized with the mutual information between observed and hidden variables, which improves latent space quality and prevents the latents from being ignored by expressive diffusion-based decoders. Empirically, we find that InfoDiffusion learns disentangled and human-interpretable latent representations that are competitive with state-of-the-art generative and contrastive methods, while retaining the high sample quality of diffusion models. Our method enables manipulating the attributes of generated images and has the potential to assist tasks that require exploring a learned latent space to generate quality samples, e.g., generative design.
Author Information
Yingheng Wang (Cornell University)
Yair Schiff (Department of Computer Science, Cornell University)

I'm a second year PhD student in the Computer Science department at Cornell University. I have also worked as a software engineer at IBM and collaborated with the Trusted AI department in IBM Research. Prior to joining IBM, I completed a MS in Computer Science at Courant Institute at NYU and a BA in Economics at the University of Pennsylvania.
Aaron Gokaslan (Cornell University)
Weishen Pan (Weill Cornell Medicine, Cornell University)
Fei Wang (Cornell University)
Chris De Sa (Cornell)
Volodymyr Kuleshov (Cornell Tech)
More from the Same Authors
-
2021 : Enhancing interpretability and reducing uncertainties in deep learning of electrocardiograms using a sub-waveform representation »
Hossein Honarvar · Chirag Agarwal · Sulaiman Somani · Girish Nadkarni · Marinka Zitnik · Fei Wang · Benjamin Glicksberg -
2023 : Calibrated Propensities for Causal Effect Estimation »
Shachi Deshpande · Volodymyr Kuleshov -
2023 : CD-GraB: Coordinating Distributed Example Orders for Provably Accelerated Training »
A. Feder Cooper · Wentao Guo · Duc Khiem Pham · Tiancheng Yuan · Charlie Ruan · Yucheng Lu · Chris De Sa -
2023 : A Survey on Knowledge Graphs for Healthcare: Resources, Application Progress, and Promise »
Hejie Cui · Jiaying Lu · Shiyu Wang · Ran Xu · Wenjing Ma · Shaojun Yu · Yue Yu · Xuan Kan · Tianfan Fu · Chen Ling · Joyce Ho · Fei Wang · Carl Yang -
2023 : Regularized Data Programming with Automated Bayesian Prior Selection »
Jacqueline Maasch · Hao Zhang · Qian Yang · Fei Wang · Volodymyr Kuleshov -
2023 Poster: CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks »
Jue Wang · Yucheng Lu · Binhang Yuan · Beidi Chen · Percy Liang · Chris De Sa · Christopher Re · Ce Zhang -
2023 Poster: STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition »
Yucheng Lu · Shivani Agrawal · Suvinay Subramanian · Oleg Rybakov · Chris De Sa · Amir Yazdanbakhsh -
2023 Poster: Semi-Autoregressive Energy Flows: Exploring Likelihood-Free Training of Normalizing Flows »
Phillip Si · Zeyi Chen · Subham S Sahoo · Yair Schiff · Volodymyr Kuleshov -
2022 Poster: Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation »
Volodymyr Kuleshov · Shachi Deshpande -
2022 Spotlight: Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation »
Volodymyr Kuleshov · Shachi Deshpande -
2019 : Networking Lunch (provided) + Poster Session »
Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki -
2019 : Towards a Sustainable Food Supply Chain Powered by Artificial Intelligence »
Volodymyr Kuleshov -
2019 Poster: Calibrated Model-Based Deep Reinforcement Learning »
Ali Malik · Volodymyr Kuleshov · Jiaming Song · Danny Nemer · Harlan Seymour · Stefano Ermon -
2019 Oral: Calibrated Model-Based Deep Reinforcement Learning »
Ali Malik · Volodymyr Kuleshov · Jiaming Song · Danny Nemer · Harlan Seymour · Stefano Ermon -
2018 Poster: Accurate Uncertainties for Deep Learning Using Calibrated Regression »
Volodymyr Kuleshov · Nathan Fenner · Stefano Ermon -
2018 Oral: Accurate Uncertainties for Deep Learning Using Calibrated Regression »
Volodymyr Kuleshov · Nathan Fenner · Stefano Ermon