Timezone: »
Poster
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Justin Cui · Ruochen Wang · Si Si · Cho-Jui Hsieh
Dataset Distillation is a newly emerging area that aims to distill large datasets into much smaller and highly informative synthetic ones to accelerate training and reduce storage. Among various dataset distillation methods, trajectory-matching-based methods (MTT) have achieved SOTA performance in many tasks, e.g., on CIFAR-10/100. However, due to exorbitant memory consumption when unrolling optimization through SGD steps, MTT fails to scale to large-scale datasets such as ImageNet-1K. Can we scale this SOTA method to ImageNet-1K and does its effectiveness on CIFAR transfer to ImageNet-1K? To answer these questions, we first propose a procedure to exactly compute the unrolled gradient with constant memory complexity, which allows us to scale MTT to ImageNet-1K seamlessly with $\sim 6$x reduction in memory footprint. We further discover that it is challenging for MTT to handle datasets with a large number of classes, and propose a novel soft label assignment that drastically improves its convergence. The resulting algorithm sets new SOTA on ImageNet-1K: we can scale up to 50 IPCs (Image Per Class) on ImageNet-1K on a single GPU (all previous methods can only scale to 2 IPCs on ImageNet-1K), leading to the best accuracy (only 5.9% accuracy drop against full dataset training) while utilizing only 4.2% of the number of data points - an 18.2% absolute gain over prior SOTA.
Author Information
Justin Cui (University of California, Los Angeles)
Ruochen Wang (University of California, Los Angeles)
Si Si (Google Research)
Cho-Jui Hsieh (UCLA)
More from the Same Authors
-
2021 : Fast Certified Robust Training with Short Warmup »
Zhouxing Shi · Yihan Wang · Huan Zhang · Jinfeng Yi · Cho-Jui Hsieh -
2021 : Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification »
Shiqi Wang · Huan Zhang · Kaidi Xu · Xue Lin · Suman Jana · Cho-Jui Hsieh · Zico Kolter -
2023 : Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound »
Zhouxing Shi · Qirui Jin · Huan Zhang · Zico Kolter · Suman Jana · Cho-Jui Hsieh -
2023 Workshop: 2nd Workshop on Formal Verification of Machine Learning »
Mark Müller · Brendon G. Anderson · Leslie Rice · Zhouxing Shi · Shubham Ugare · Huan Zhang · Martin Vechev · Zico Kolter · Somayeh Sojoudi · Cho-Jui Hsieh -
2023 Poster: Representer Point Selection for Explaining Regularized High-dimensional Models »
Che-Ping Tsai · Jiong Zhang · Hsiang-Fu Yu · Eli Chien · Cho-Jui Hsieh · Pradeep Ravikumar -
2023 Poster: PINA: Leveraging Side Information in eXtreme Multi-label Classification via Predicted Instance Neighborhood Aggregation »
Eli Chien · Jiong Zhang · Cho-Jui Hsieh · Jyun-Yu Jiang · Wei-Cheng Chang · Olgica Milenkovic · Hsiang-Fu Yu -
2022 Workshop: Workshop on Formal Verification of Machine Learning »
Huan Zhang · Leslie Rice · Kaidi Xu · aditi raghunathan · Wan-Yi Lin · Cho-Jui Hsieh · Clark Barrett · Martin Vechev · Zico Kolter -
2022 Poster: A Branch and Bound Framework for Stronger Adversarial Attacks of ReLU Networks »
Huan Zhang · Shiqi Wang · Kaidi Xu · Yihan Wang · Suman Jana · Cho-Jui Hsieh · Zico Kolter -
2022 Spotlight: A Branch and Bound Framework for Stronger Adversarial Attacks of ReLU Networks »
Huan Zhang · Shiqi Wang · Kaidi Xu · Yihan Wang · Suman Jana · Cho-Jui Hsieh · Zico Kolter -
2021 Poster: Overcoming Catastrophic Forgetting by Bayesian Generative Regularization »
PEI-HUNG Chen · Wei Wei · Cho-Jui Hsieh · Bo Dai -
2021 Spotlight: Overcoming Catastrophic Forgetting by Bayesian Generative Regularization »
PEI-HUNG Chen · Wei Wei · Cho-Jui Hsieh · Bo Dai -
2020 Poster: On Lp-norm Robustness of Ensemble Decision Stumps and Trees »
Yihan Wang · Huan Zhang · Hongge Chen · Duane Boning · Cho-Jui Hsieh -
2020 Poster: Learning to Encode Position for Transformer with Continuous Dynamical Model »
Xuanqing Liu · Hsiang-Fu Yu · Inderjit Dhillon · Cho-Jui Hsieh -
2020 Poster: Stabilizing Differentiable Architecture Search via Perturbation-based Regularization »
Xiangning Chen · Cho-Jui Hsieh -
2019 Poster: Area Attention »
Yang Li · Lukasz Kaiser · Samy Bengio · Si Si -
2019 Poster: Robust Decision Trees Against Adversarial Examples »
Hongge Chen · Huan Zhang · Duane Boning · Cho-Jui Hsieh -
2019 Oral: Area Attention »
Yang Li · Lukasz Kaiser · Samy Bengio · Si Si -
2019 Oral: Robust Decision Trees Against Adversarial Examples »
Hongge Chen · Huan Zhang · Duane Boning · Cho-Jui Hsieh -
2017 Poster: Gradient Boosted Decision Trees for High Dimensional Sparse Output »
Si Si · Huan Zhang · Sathiya Keerthi · Dhruv Mahajan · Inderjit Dhillon · Cho-Jui Hsieh -
2017 Talk: Gradient Boosted Decision Trees for High Dimensional Sparse Output »
Si Si · Huan Zhang · Sathiya Keerthi · Dhruv Mahajan · Inderjit Dhillon · Cho-Jui Hsieh