Timezone: »
Unsupervised domain adaptation (UDA) enables the transfer of models trained on source domains to unlabeled target domains. However, transferring complex time series models presents challenges due to the dynamic temporal structure variations across domains. This leads to feature shifts in the time and frequency representations. Additionally, the label distributions of tasks in the source and target domains can differ significantly, posing difficulties in addressing label shifts and recognizing labels unique to the target domain. Effectively transferring complex time series models remains a formidable problem. We present RAINCOAT, the first model for both closed-set and universal domain adaptation on complex time series. RAINCOAT addresses feature and label shifts by considering both temporal and frequency features, aligning them across domains, and correcting for misalignments to facilitate the detection of private labels. Additionally, RAINCOAT improves transferability by identifying label shifts in target domains. Our experiments with 5 datasets and 13 state-of-the-art UDA methods demonstrate that RAINCOAT can improve transfer learning performance by up to 16.33% and can handle both closed-set and universal domain adaptation.
Author Information
Huan He (Harvard University)
Owen Queen (Harvard University)
Teddy Koker (MIT Lincoln Laboratory, Massachusetts Institute of Technology)
Consuelo Cuevas (MIT Lincoln Laboratory, Massachusetts Institute of Technology)
Theodoros Tsiligkaridis (MIT Lincoln Laboratory, Massachusetts Institute of Technology)
Marinka Zitnik (Harvard University)
More from the Same Authors
-
2021 : Towards a Rigorous Theoretical Analysis and Evaluation of GNN Explanations »
· Chirag Agarwal · Marinka Zitnik · Hima Lakkaraju -
2021 : On Frank-Wolfe Adversarial Training »
Theodoros Tsiligkaridis · Jay Roberts -
2021 : Enhancing interpretability and reducing uncertainties in deep learning of electrocardiograms using a sub-waveform representation »
Hossein Honarvar · Chirag Agarwal · Sulaiman Somani · Girish Nadkarni · Marinka Zitnik · Fei Wang · Benjamin Glicksberg -
2021 : Interactive Visual Explanations for Deep Drug Repurposing »
Qianwen Wang · Payal Chandak · Marinka Zitnik -
2021 : Towards a Unified Framework for Fair and Stable Graph Representation Learning »
Chirag Agarwal · Hima Lakkaraju · Marinka Zitnik -
2021 : Interactive Visual Explanations for Deep Drug Repurposing »
Qianwen Wang · Payal Chandak · Marinka Zitnik -
2023 : ERM++: An Improved Baseline for Domain Generalization »
Piotr Teterwak · Kuniaki Saito · Theodoros Tsiligkaridis · Kate Saenko · Bryan Plummer -
2023 Poster: Supervised Metric Learning to Rank for Retrieval via Contextual Similarity Optimization »
Christopher Liao · Theodoros Tsiligkaridis · Brian Kulis -
2022 Workshop: AI for Science »
Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Hanchen Wang · Connor Coley · Le Song · Linfeng Zhang · Marinka Zitnik -
2020 Workshop: Graph Representation Learning and Beyond (GRL+) »
Petar Veličković · Michael M. Bronstein · Andreea Deac · Will Hamilton · Jessica Hamrick · Milad Hashemi · Stefanie Jegelka · Jure Leskovec · Renjie Liao · Federico Monti · Yizhou Sun · Kevin Swersky · Rex (Zhitao) Ying · Marinka Zitnik