Timezone: »
Tutorial
How to DP-fy ML: A Practical Tutorial to Machine Learning with Differential Privacy
Sergei Vassilvitskii · Natalia Ponomareva · Zheng Xu
Mon Jul 24 04:30 PM -- 06:30 PM (PDT) @ Meeting Room 316 A-C
Author Information
Sergei Vassilvitskii (Google)
Natalia Ponomareva (Google)
Zheng Xu (Google Research)
More from the Same Authors
-
2021 : Local Adaptivity in Federated Learning: Convergence and Consistency »
Jianyu Wang · Zheng Xu · Luyang Liu -
2021 : Industrial Booth (Google) »
Zheng Xu · Peter Kairouz -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 Workshop: Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and Opportunities »
Zheng Xu · Peter Kairouz · Bo Li · Tian Li · John Nguyen · Jianyu Wang · Shiqiang Wang · Ayfer Ozgur -
2023 : Introduction and Opening Remarks »
Zheng Xu -
2023 Poster: Fast as CHITA: Neural Network Pruning with Combinatorial Optimization »
Riade Benbaki · Wenyu Chen · Xiang Meng · Hussein Hazimeh · Natalia Ponomareva · Zhe Zhao · Rahul Mazumder -
2023 Poster: Beyond Uniform Lipschitz Condition in Differentially Private Optimization »
Rudrajit Das · Satyen Kale · Zheng Xu · Tong Zhang · Sujay Sanghavi -
2023 Poster: On the Convergence of Federated Averaging with Cyclic Client Participation »
Yae Jee Cho · PRANAY SHARMA · Gauri Joshi · Zheng Xu · Satyen Kale · Tong Zhang -
2021 : Industrial Panel »
Nathalie Baracaldo · Shiqiang Wang · Peter Kairouz · Zheng Xu · Kshitiz Malik · Tao Zhang -
2021 Poster: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 Spotlight: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2020 Poster: The Tree Ensemble Layer: Differentiability meets Conditional Computation »
Hussein Hazimeh · Natalia Ponomareva · Petros Mol · Zhenyu Tan · Rahul Mazumder -
2019 Poster: Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy »
Kareem Amin · Alex Kulesza · andres munoz · Sergei Vassilvitskii -
2019 Oral: Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy »
Kareem Amin · Alex Kulesza · andres munoz · Sergei Vassilvitskii -
2019 Poster: A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes »
Jennifer Gillenwater · Alex Kulesza · Zelda Mariet · Sergei Vassilvitskii -
2019 Oral: A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes »
Jennifer Gillenwater · Alex Kulesza · Zelda Mariet · Sergei Vassilvitskii -
2018 Poster: Competitive Caching with Machine Learned Advice »
Thodoris Lykouris · Sergei Vassilvitskii -
2018 Oral: Competitive Caching with Machine Learned Advice »
Thodoris Lykouris · Sergei Vassilvitskii -
2017 Poster: Consistent k-Clustering »
Silvio Lattanzi · Sergei Vassilvitskii -
2017 Talk: Consistent k-Clustering »
Silvio Lattanzi · Sergei Vassilvitskii