Timezone: »
Learning from human preferences or preference-based learning has been critical to major advancements in AI and machine learning. Since human beings are naturally more reliable at providing feedback on a relative scale compared to numerical values, collecting preference feedback is more budget-friendly and involves less bias. The broad objective of this workshop is twofold:1) Bring together different communities where preference-based learning has played a major role. This includes dueling bandits, multi-agent games, econometrics, social choice theory, reinforcement learning, optimization, robotics and many more, for which we aim to create a suitable forum to exchange techniques, ideas, learn from each other and potentially create new and innovative research questions. 2) Connect theory to practice by identifying real-world systems which can benefit from incorporating preference feedback, such as marketing, revenue management, search engine optimization, recommender systems, healthcare, language modeling, interactive chatbots, text summarization, robotics, and so on.We will consider our workshop a success if it inspires researchers to embark on novel insights in the general area of preference-based learning: Bringing attention from different communities to foster dissemination, cross-fertilization and discussion at scale. Especially, building bridges between experimental researchers and theorists towards developing better models and practical algorithms, and encouraging participants to propose, sketch, and discuss new starting points, questions or applications.
Author Information
Aadirupa Saha (Apple)
Bio: Aadirupa Saha is currently a visiting faculty at Toyota Technological Institute at Chicago (TTIC). She obtained her PhD from the Department of Computer Science, Indian Institute of Science, Bangalore, advised by Aditya Gopalan and Chiranjib Bhattacharyya. She spent two years at Microsoft Research New York City as a postdoctoral researcher. During her PhD, Aadirupa interned at Microsoft Research, Bangalore, Inria, Paris, and Google AI, Mountain View. Her research interests include Bandits, Reinforcement Learning, Optimization, Learning theory, Algorithms. She has organized various workshops, tutorials and also served as a reviewer in top ML conferences. Research Interests: Machine Learning Theory (specifically Online Learning, Bandits, Reinforcement Learning), Optimization, Game Theory, Algorithms. She is recently interested in exploring ML problems at the intersection of Fairness, Privacy, Game theory and Mechanism design.
Mohammad Ghavamzadeh (Google Research)
Robert Busa-Fekete (Google Research)
Branislav Kveton (Google Research)
Viktor Bengs (University of Munich)
More from the Same Authors
-
2022 : Non-stationary Bandits and Meta-Learning with a Small Set of Optimal Arms »
MohammadJavad Azizi · Thang Duong · Yasin Abbasi-Yadkori · Claire Vernade · Andras Gyorgy · Mohammad Ghavamzadeh -
2023 Poster: Federated Online and Bandit Convex Optimization »
Kumar Kshitij Patel · Lingxiao Wang · Aadirupa Saha · Nati Srebro -
2023 Poster: Multi-Task Off-Policy Learning from Bandit Feedback »
Joey Hong · Branislav Kveton · Manzil Zaheer · Sumeet Katariya · Mohammad Ghavamzadeh -
2023 Poster: On Second-Order Scoring Rules for Epistemic Uncertainty Quantification »
Viktor Bengs · Eyke Hüllermeier · Willem Waegeman -
2023 Poster: Thompson Sampling with Diffusion Generative Prior »
Yu-Guan Hsieh · Shiva Kasiviswanathan · Branislav Kveton · Patrick Bloebaum -
2023 Poster: Multiplier Bootstrap-based Exploration »
Runzhe Wan · Haoyu Wei · Branislav Kveton · Rui Song -
2022 Workshop: Complex feedback in online learning »
Rémy Degenne · Pierre Gaillard · Wouter Koolen · Aadirupa Saha -
2022 Poster: Safe Exploration for Efficient Policy Evaluation and Comparison »
Runzhe Wan · Branislav Kveton · Rui Song -
2022 Poster: Deep Hierarchy in Bandits »
Joey Hong · Branislav Kveton · Sumeet Katariya · Manzil Zaheer · Mohammad Ghavamzadeh -
2022 Poster: Versatile Dueling Bandits: Best-of-both World Analyses for Learning from Relative Preferences »
Aadirupa Saha · Pierre Gaillard -
2022 Spotlight: Versatile Dueling Bandits: Best-of-both World Analyses for Learning from Relative Preferences »
Aadirupa Saha · Pierre Gaillard -
2022 Spotlight: Deep Hierarchy in Bandits »
Joey Hong · Branislav Kveton · Sumeet Katariya · Manzil Zaheer · Mohammad Ghavamzadeh -
2022 Spotlight: Safe Exploration for Efficient Policy Evaluation and Comparison »
Runzhe Wan · Branislav Kveton · Rui Song -
2022 Poster: Feature and Parameter Selection in Stochastic Linear Bandits »
Ahmadreza Moradipari · Berkay Turan · Yasin Abbasi-Yadkori · Mahnoosh Alizadeh · Mohammad Ghavamzadeh -
2022 Spotlight: Feature and Parameter Selection in Stochastic Linear Bandits »
Ahmadreza Moradipari · Berkay Turan · Yasin Abbasi-Yadkori · Mahnoosh Alizadeh · Mohammad Ghavamzadeh -
2022 Poster: Stochastic Contextual Dueling Bandits under Linear Stochastic Transitivity Models »
Viktor Bengs · Aadirupa Saha · Eyke Hüllermeier -
2022 Poster: Optimal and Efficient Dynamic Regret Algorithms for Non-Stationary Dueling Bandits »
Aadirupa Saha · Shubham Gupta -
2022 Spotlight: Optimal and Efficient Dynamic Regret Algorithms for Non-Stationary Dueling Bandits »
Aadirupa Saha · Shubham Gupta -
2022 Spotlight: Stochastic Contextual Dueling Bandits under Linear Stochastic Transitivity Models »
Viktor Bengs · Aadirupa Saha · Eyke Hüllermeier -
2021 Poster: Meta-Thompson Sampling »
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari -
2021 Spotlight: Meta-Thompson Sampling »
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari -
2021 Poster: Confidence-Budget Matching for Sequential Budgeted Learning »
Yonathan Efroni · Nadav Merlis · Aadirupa Saha · Shie Mannor -
2021 Poster: Adversarial Dueling Bandits »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2021 Spotlight: Confidence-Budget Matching for Sequential Budgeted Learning »
Yonathan Efroni · Nadav Merlis · Aadirupa Saha · Shie Mannor -
2021 Spotlight: Adversarial Dueling Bandits »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2021 Poster: Optimal regret algorithm for Pseudo-1d Bandit Convex Optimization »
Aadirupa Saha · Nagarajan Natarajan · Praneeth Netrapalli · Prateek Jain -
2021 Spotlight: Optimal regret algorithm for Pseudo-1d Bandit Convex Optimization »
Aadirupa Saha · Nagarajan Natarajan · Praneeth Netrapalli · Prateek Jain -
2021 Poster: Dueling Convex Optimization »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2021 Spotlight: Dueling Convex Optimization »
Aadirupa Saha · Tomer Koren · Yishay Mansour -
2020 Poster: From PAC to Instance-Optimal Sample Complexity in the Plackett-Luce Model »
Aadirupa Saha · Aditya Gopalan -
2020 Poster: Improved Sleeping Bandits with Stochastic Action Sets and Adversarial Rewards »
Aadirupa Saha · Pierre Gaillard · Michal Valko -
2020 Poster: Influence Diagram Bandits: Variational Thompson Sampling for Structured Bandit Problems »
Tong Yu · Branislav Kveton · Zheng Wen · Ruiyi Zhang · Ole J. Mengshoel -
2019 Poster: Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits »
Branislav Kveton · Csaba Szepesvari · Sharan Vaswani · Zheng Wen · Tor Lattimore · Mohammad Ghavamzadeh -
2019 Oral: Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits »
Branislav Kveton · Csaba Szepesvari · Sharan Vaswani · Zheng Wen · Tor Lattimore · Mohammad Ghavamzadeh -
2017 Poster: Model-Independent Online Learning for Influence Maximization »
Sharan Vaswani · Branislav Kveton · Zheng Wen · Mohammad Ghavamzadeh · Laks V.S Lakshmanan · Mark Schmidt -
2017 Poster: Online Learning to Rank in Stochastic Click Models »
Masrour Zoghi · Tomas Tunys · Mohammad Ghavamzadeh · Branislav Kveton · Csaba Szepesvari · Zheng Wen -
2017 Talk: Online Learning to Rank in Stochastic Click Models »
Masrour Zoghi · Tomas Tunys · Mohammad Ghavamzadeh · Branislav Kveton · Csaba Szepesvari · Zheng Wen -
2017 Talk: Model-Independent Online Learning for Influence Maximization »
Sharan Vaswani · Branislav Kveton · Zheng Wen · Mohammad Ghavamzadeh · Laks V.S Lakshmanan · Mark Schmidt